DICKSMITH’S

a B ™ h B
a &8 &% 8 & & & B ¥ E § &2 B+
" ® @8 E & 8% =& & B B 2 =" °¥°
s &4 8 & & ®BE 8 € 8 8 A n»
N & ## & B BEBE B & & & &
B & 8 B E & § 8 =B 2 &
4 & 34 & B BE B B A =
i H & 2 R B B & B B
5 WM ¥ & B B A B R
K A& HE B R B BE R B N
A W N M N HE B X E
E E E H K »» ¥ E =m »
- K

Cat. B-6195

FOREWORD BY DICK SMITH

Hi! I guess if you're reading this book, it's because you've
either just bought a Wizzard computer, or are thinking of
buying one. So I'd like to welcome you to the fascinating world
of computers.

It's hard to describe my excitement when we were presented with
the chance to sell the exciting new Wizzard computer in
Australia and New Zealand. Because of the Wizzard's incredibly
low price, I knew that it would glve many more people than ever
before the opportunity to get familiar with, and confident
with, computers. Particularly kids -- and I know from my own
daughters that all of our kids are going to HAVE to get along
with computers. Their world is going to be full of the things,
so I believe it is tremendously important for us to help them
become the masters rather than the slaves!

To ensure that the Wizzard really would help everyone learn
about computers, though, we needed a REALLY GOOD introductory

book to go with it. One that didn't assume that you already
knew quite a bit about them, that didn't bamboozle you with a

lot of technical jargon, that gave clear, easy to read
explanations without "talking down". And above all, one that
avoided the terribly boring, serious tone that always seems to
creep in around computers.

In short, we needed a book that really would help people use
the Wizzard to understand computers, and would make this both
easy and FUN!

That then was the challenge I set Jim Rowe and Sue Robinson --
to come up with a better introduction to computers than I've

ever seen before, Not an easy job, but I think they've managed
to do it in this "Fun Way into Computers" book.

So read it for fun and enjoyment -- and learn qulte a lot about
computers at the same timel

Ditk Srath.

ERRATUM:

Please note that initial shipments of the
Y-1605 Wizzard BASIC cartridge exhiliblt a milnor
peculiarity concerning the RND function,
described on page 41l.

With these BASIC cartridges, the number
guessing program on page 39 will not run
‘properly when the new line 10 is typed 1n as
shown on page 41. However normal operation of
this and similar programs using the RND
function can be achieved quite simply, by
adding this extra line: .

15 A = INT(A)

In other words, whenever you use the RND
function to generate a random number, turn the
number into an integer using the INT functilon

before doing anything else.

National Library of Australia Card No.
and ISBN @ 949772 12 7

COPYRIGHT (C) 1982, DICK SMITH ELECTRONICS

The material in this book 1s protected by copyright. It may not
be legally reproduced, stored in a retrleval system,

transmitted or copied by any means —-- whether electrical,
magnetic, photographlc or other technology —-—- without specific

written permission from the publisher. All such rights are
reserved by Dick Smith Electronics Pty Ltd, Sydney, Australia.

11

DICK SMITH'S

¥V mv@AV
COMPUTERS

USING YOUR WIZZARD

Written by Jim Rowe and Sue Robinson.

Cartoons by Allstalr Barnard

PUBLISHED BY DICK UMITH ELECTRONICS PTY LTD,

SYDNEY , AUSTRALIA

II1

READ THIS FIRST!

Before you unpack your Wizzard and start putting it together,
take a quick look at your TV set, Particularly the aerial

socket around the back.

@

If you are lucky, ®
it will look like this:

...and you won't need to read any more of this page.

But if it doesn't, and
looks like this instead:

don't worry, you can still use the Wizzard, but you will need
at least one extra gadget called a BALUN. In fact, you'll
probably also need a second one, but slightly different.

Both types of balun are available from any of the Dick Smith
stores and many of our resellers. They cost around $2.00 each.

You will need a "75 ohm to 3048 ohm"
TV-game type balun. Qur L-4454 balun

ig suitable and looks like this:

The other balun you are likely to
need is a "30¢ ohm to 75 ohm" balun,
Our L-4456 balun is one of these;

it looks like this:

vou'll find out how to use these baluns to connect the Wizzard

to your TV on page 8, but we wanted to warn you about the
possible need for them, to save you being disappointed later,
There's nothing worse than starting something, only to find
that you can't go on because you haven't got a special part.
Especially as you generally find this on a baturday afternoon,

when all the shops have shut!

1V

LIST OF CONTENTS

CHAPTER

l - WhataCOmpLIter iSn't NN E R EE EE N N E N I I AR R A R I

2 - Getting your WiZZafd gOing 9 5 8 0 O P PP O D LD S E O OB O L L LS

3 —= A bit more about COMPULErS .ccceecesvsccnccsscsocsnssssos

4 -- Teaching your Wizzard some tricCKkS ..cescesessvcccces

5 - Becomingaprogrammer > & & & & 5 & 5 0 8 6 &% 8 0 & S & D e s B s> S

6 _— More programming & & & & & & & & & B & 8B 0O 0 b e b PSEES D

7 — More On tables -l'.l‘..llllll-liiililll'lllllii'..iili

8 —— GUESSing gamES ® & & 8 & P B O P B0 B OO P O P S S S SSEEEea e s

9 —— Making Wizzard do more of the WOrk ...cceccescccccccas

13 —— Saving programs on cassette ...sccccevos000s0sascoce

ll - SUbrOUtineS ® & » & & & & & & 5 9 & 8 & 8 & 4 " & & 80 PSS B BN RS EDE

12 -- Storing data 1n your ProgramsS ..ceceececsscssscossscnaoscs

13 -— GEtting Wizzard tO play a tune ® B 8 9 2 8B &8 6 8068 S S ss P

14 _—— WhiCh COIOur w0u1d you 1ik3? .I.llll.lll.lll...lillﬂl

15 —— Drawing on the screen (graphicCsS) .eceeceeescssccssssss

16 __Abit more abOUt Wizzard's mathS "8 P 5 8 S E PSSO e

1.7 _-—— Some fil’lal Comments Y EEEEE R E I I I I I I I I A

Appendix A:

Appendix
Appendix
Appendix

Appendix

B:

What the unfamiliar words mean .ceceessccecocase
A summary of Wizzard's BASIC cesrcstsarscronan
Wizzard's error messageé csecescssssscccsuons s e
Wizzard's ASCII character codesS ..cevecccnsnas

Answers to quick quiz questions .c.ceecscsscccee

PAGE

1

4

11

17

23

26

33
37

41

45
48
52
56
61
65
710

74

75
77
82
84

85

CHAPTER 1 -- What a computer 1isn't

First of all, forget everything you've heard about computers
being electronic brains -- they're not.

Computers can't think like you and I. The only thing they can
really do 1s obey commands, like a trained dog (which may have

a brain -- but a genius 1it's not).

T
Just as you traln a dog to sit g(jD)b
or fetch, you can train a Z

computer to add numbers
together or store 1nformation

for you. |),J.J

Only it can do these things
FAST.

Computers do seem to be able to do
complicated and impressive tricks.
But remember, they can't do
anything without 1instructions —-
step by step -- from a human being.

Is a computer really just a super fast dum-dum then -- all
"muscles" and no brain?

In a word —-— vyes!

A computer can't think for itself. It does cxactly what it has
been told to do.

Let's 1magine that you move to a new town -- a town that you
haven't visited before. And you have to work out how to get to
the local shops, the school, the railway station etc.

It won't be easy. But after a lot of mistakes, you'll finally
work out the shortest way of getting to each place.

Now that you have worked it all out, you can save other people
the same trouble. Just give them a set of simple 1instructions.
For example, to get to the railway station you might write the
following:

1. Turn left outside the front gate |
2. Walk along the street until you reach the fire station.
3. Turn left and you'll find the station 100 metres along,

on the right.

To get there, they won't really have to think, just follow your
instructions.

In a similar way, when a computer does anything, no matter how
complicated, it is simply following a set of step-by-step
instructions. This is its "PROGRAM".

When you give the computer the step-by-step instructilons it
must follow to do a job, you are "PROGRAMMING" 1it.

So think of a computer as
a sort of super tast,

electronic slave.

A slave which can do

all sorts of useful
things for you, providing
you first tell it exactly
how to do them.

Just before you unpack your Wizzard computer and get going with
it -- try testing yourself with the simple questions on page 3.

Chapter 2 will tell you how to put the wizzard together.

QUICK QUIZ 1

1. What can a computer work out for 1tself?

2. What does a computer actually do? (Tick one)
a. Tell us things we don't know
b. Figure out the answers to our problems
c. Just follow our instructions, or somebody else's, and
do it faster than we can

3. What do you call the set of instructions we glve a computer?

4., Why did the computer cross the road?

5. What must you remember when telling a computer what to do?
(Tick the item or items that are right)
a. Ask 1t nicely
b. Tell it in detail everything you want 1t to do

c. Don't swear at 1t
d. Get your instructions in the right order
e. Be sure to speak clearly to it

Now turn to page 85 to check your answers. If you have got
anything wrong, go back through chapter 1 until you fully
understand it. Then you will be ready to go on to chapter 2.

CHAPTER 2 -- GeEPihg_zouq Wiz;ardlgoiqg
This chapter will tell you how to get your Wizzard going, so
you can try your hand at some programming.

The Wizzard is a very powerful little computer and it's ideal
for learning about programming.

It costs much less than most computers, it's really easy to
connect up, and just as easy to use,.

The first thing to do is unpack your Wizzard from its box...

What you get
Your Wizzard consists of 4 main pieces:

1. The Wizzard console itself. This has the two hand control
units, making up the keyboard, a cable coming out of the back
for connection to the aerial switch box and your TV set, and a
socket on the back for the cable from the power adapter unit.

llllllllllllllllllllllllllllllllllllll

A - e

It has another socket on the right-hand side, to plug in your

programming cartridge. This socket will also accept games
cartridges, which have already been programmed.,

There's an on/off switch and a RESET button on top, but more
about these later.

2. The power adaptor unit: P g, Y

This has a cable on one end, which plugs into the power poilnt,
and another cable which plugs into the back of your Wizzard at
the other.

3. The aerial swltch box:

This has a short cable
and plug, which plugs
into the aerial socket

on your TV set. It also
has two sockets: one

to take the plug on

your TV aerlal cable,

and the other to take

the plug on the

Wizzard's output cable.
There is a sliding switch
on the top, to let you
connect the TV to elther
the aerial (for normal
reception) or to the Wizzard,
without fiddling with plugs.

4. The BASIC cartridge:

This plugs into the socket on the side of your Wizzard and
tells the computer how to understand your programs, which are
written in simple BASIC language.

And for keeplng records...

Wizzard does not have a very big memory and 1t forgets the
instructions you have given it whenever you turn 1t off,

Sometimes you will want to use the same instructions agaln and
again. And it will be a nuisance to have to Keep telling them

to Wizzard every time you want it to do that job.

Wizzard's Cassette attachment is an optional extra but it 1is
well worth having, so that you can keep a record of the
programs you have written for Wizzard. (We explain how you set
it up and use it in chapter 10).

If you get the cassette attachment, it is a good 1dea to also
get some Dick Smith C-10 cassette tapes to go with 1it.

These look like ordinary cassette tapes, but they are speclally
designed for recording your lists of instructions (PROGRAMS) 1n

the same way as an ordinary cassette records music,

Putting 1t all together

First of all, place your Wizzard in a convenlent place,
somewhere in front of your TV set. It should be within a couple
of metres of a power point.

Make sure it's also where you can sit down 1in front of it
comfortably, for hours on end., Computers are like good books --

once you start, you don't want to stop!

Now take the power adaptor unilt
and plug the cable with the

in this book,
this sign means
"do this yourself"

small round 5-pin plug into the
socket on the back of Wizzard.

Be careful, don't force it. It will only plug in properly with
the pins towards the bottom, and when you have them right 1t

slips in easlily.

Put the power adaptor 1itself behind the Wizzard, or under the
table on the floor -- somewhere out of the way, but where the
cables won't be strained or pulled out accidentally.

Then plug the adaptor's second
cord, with the 2-pin power
plug, into the power point,

You can turn on the power point
at this stage, it won't do any
harm. Now take a look at the
back of your TV set, where

the cable from your aerial
connects to 1it.

If the back of your TV set has a round aerlal socket (see the
"READ THIS FIRST" section at the front of the book), just:

Plug the cable from Wizzard's
aerial switch box 1nto 1t,

Then plug the TV aerial lead
into the "aerial" socket on

the switch box, and the lead
from Wizzard into the "game®”
socket.

from TV
aerial

from Wizzard

If your TV has a couple of screw terminals instead of the round
socket, you will need to use the baluns mentioned in the READ
THIS FIRST section. But don't despair. There's no real problemn.

Use the "75 ohm to 30@ ohm" TV-game type balun (L-4454) to
adapt your TV set's aerial terminals so that they take the plug
from the Wizzard's aerial switch box. Here's another picture

of 1t

The wires with the "“spade"™ lugs connect to the terminals on
your TV, while the socket at the other end takes the plug from

the Wizzard's aerial switch box.

You'll probably need the other balun,
the "3¢06 ohm to 75 ohm" type (L-4456),
to adapt your twin-lead aerial cable
so that it can still connect to the
switch box. Here's another picture

of the balun we mean:

The round plug on one side goes into the aerial socket on the
switch box, while the screw terminals on the other end take the
wires from your TV aerlal cable,

from TV

So if you've had to use aerial

the baluns, your connections
should look like this:

from Wizzard

Turn on your TV and set the
channel selector to channel 1

in the normal (VHF) channel
range.

Also set the Wizzard's aerilial switch box to the "game"
position.

You're now ready for the last big step: plugging the BASIC
cartridge into the Wizzard. But before you do this, make sure
the Wizzard's on/off switch is in the OFF position.,

In fact you should always make sure this switch 1s in the OFF
position before you plug in or remove a cartridge from your
Wizzard. Otherwise either the Wizzard itself, or the cartridge,
may be damaged and you won't be able to use it agaln until 1t
1s fixed!

Switch off the Wizzard then

plug 1n the BASIC cartridge
with its label facing up.

Again do thilis carefully, so you don't damage anything. Push 1t
all the way in, so that the groove 1is in line with the edge of
the Wizzard,

If you've got the cartridge around the right way, and properly
lined up, it slips in easily without too much effort.

Once the cartridge is in place, you can turn on the Wizzard

again. This time you should be greeted by a green picture on
the TV screen, showing this message 1n black:

CREATIVISION BASIC

BY VTC
COPYRIGHT 1982

>H

Now see if you can do this quick quiz before going on to
Chapter 3, which tells you more about how your Wizzard works.

QUICK QUIZ 2

1. Why might you need baluns to hook up your Wizzard? (tick
one)

Because your power point is the wrong colour
Because your telephone 1s too far away

Because your mother likes the look of them
Because your TV set has the wrong sort of aerial socket

0,0 T Y
L

2. What must you do to your Wizzard before you plug in the

BASIC cartridge? (tick one)
a. Say "Hold still, this will ticklel™®

b. Turn Wizzard off
Cc. Switch off your TV

3. What channel should your TV be on?

4. Why couldn't the Wizzard talk to his TV set?

10

CHAPTER 3 -- A bit more about computers

In Chapter 1 we explained that a computer was like a high-speed
electronic slave., Well it is, in the sense that 1t does exactly
what you tell it to do -- and 1t does 1t very quickly.

But even though it 1s so quick, 1t is really far more stupild
than any human slave could ever be.

It will do exactly as it is told but it won't do anything
unless you tell 1t to!

Perhaps the main reason why people find computers a little hard
to get used to is that they usually obey the instructions 1n a
program in much less time than it takes to work out or give

them those instructions.

And that can seem pretty nifty!

The main thing to remember about the way a computer works 1s
that it can do only two of the many things that we can do with

our brains.

We can learn, remember, have ideas, work out answers to
questions, think of Jjokes and all sorts of things.

The computer can only remember (using its MEMORY) and obey
orders (using its PROCESSOR). But it does those two things

very quickly.

Now because a computer has absolutely no intelligence, it can't
decide anything from what it has done before,

It can't guess either, or work something out for itself when
vou don't explain it properly.

It can't even remember anything unless you tell it to.

So the instructions in its program must be very clear and
complete, right down to the smallest detall.

It relies on YOU to do the thinking...

Sounds easy enough, doesn't it? But is isn't quite as easy as
it seems. Explaining something to a dum-dum can be tricky!

11

Clever as we humans are, we are just not used to explaining
things clearly or completely. And of course we don't have to be

all that careful when we're talking to another person, because
we can rely on them "knowing what we mean".

But this isn't good enough when you write a computer program.
So what usually happens when you try it out is that you find

the computer "gets it wrong®.

Or it doesn't do that job at all -- it does something entirely
different!

When this happens (and it does all the time, even with
experienced computer programmers), it is almost NEVER because
the computer has made a mistake.

At least 999,999 times out of 1,000,008 it is because YOU, the
programmer, have blundered.

You'll have left out an important step, or told it to do one
thing when you should have told it to do the opposite, or
something like that. And the computer, being a completely
obedient dum-dum, will do EXACTLY what you tell it. No more,

and no less.

Here's a very simple example,
Suppose you want the computer
to add two numbers together,
say 2 and 2. Like most of us,
you'd simply tell the computer

to take the first number and R ¢
add the other one to it. But '
if you write a program to do
just that, you'll find nothing
seems to happen. Why?

LGS,

Because you also have to tell 1t
to show you the answer...

With another person, you wouldn't need to tell them this,
because if you simply said: "Add 2 and 2", they would assume
that you also wanted them to tell you the answer, But a
computer can't assume anything, so you have to work out and

tell it every single thing you want 1t to do,

12

Funny, isn't it? We humans are supposed to be the bright ones,

but a stupld computer can show us up every time, simply by
doing exactly what we tell it!

So a machine is forcing you to think and explain yourself more
clearly. If you don't, it won't do what you want!

LOADING in, and RUNNING programs

OK, you may say, you get the message about computers being
dumb, so that we have to tell them every little thing we want

them to do. And you see why that forces US to be much more
careful than if we were teaching another person how to do

something. But what exactly does a computer program look like,
and how do you get the computer to do what 1t says?

We'll start looking more closely at programs themselves
shortly. For the moment, just think of it as a list of simple
instructions. Like DO THIS, THEN DO THAT, and NOW DO THE OTHER.

IMPORTANT
You get the computer to obey your
program by first loading the
program of instructions into
the part of the computer known
as 1ts MEMORY.

What it does is simply store your program, so that you don't
have to keep feeding it into the computer over and over again.

IMPORTANT
When a program 1s loaded and in
the computer's memory, you then
get the other main part of the

computer -- called a PROCESSOR
or "CPU" (short for "Central
Processing Unit") —-- to follow

the instructions in the program.
This 1s called RUNNING the
program.

It RUNs your program by dolng two simple steps over and over
again. First it FETCHES the first instruction from 1ts MEMORY
(which is just the same as you do when you remember something
~- only much faster), then 1t looks at thilis instruction and
does what it says. This 1s called EXECUTING the instruction.,
Then 1t fetches the next 1nstruction, and executes it too. Then
it fetches the third instruction, and executes it. And so on...

13

Not all that complicated, is it? Just a simple matter of
looking at each instruction, and doing what it says. The main
thing to remember 1is that it all happens very, very fast.

How YOU "talk" to the Wizzard...

You can load the program into the computer's memory in a
variety of ways. The first time round, you have to spell it out
by touching the letters on the computer's special
touch-sensitive keyboard. Once it's in, though, you can get the
computer to SAVE it for you by recording it on a cassette tape.

This is the same thing as telling the computer to learn the
program so that 1t doesn't forget it.

From then on, all you have to do is LOAD the program 1in agailn
from the tape, each time you want the computer to do that job.
The computer will remember how to do 1it.

Now a computer doesn't have ears to hear with or a mouth to
speak with like we do. So we have to use a different way of
COMMUNICATING with 1it: typing on 1ts keyboard.

Computers are not even bright enough to understand English
(which is FAR too complicated for them) so we have to learn a
language which IS easy enough for them to follow.

Different computers understand different languages, but the
Wizzard can follow programs written in a language called BASIC,
which is very easy to learn because it is a lot like English,

These are some of the differences between people and computers:

ZX 15 g rRG TR
LS IeAL AMSWER = 15, 5O w Y
* g o

LIFE
FTH PIMIENSIOMNAL PRREH LAY > FRICE
+ HUBSLES CONSTANMNT = IR K

57 x € TAN 57° RSKI BRSIC
J7+ 15 PARSECK T STEED °F

VIRPEQ NPT

AUDIO INPUT

AUDIS CUTPUT

14

You also use the keyboard to give the computer 1its special
orders or COMMANDS.

For example you might type in the command "RUN" which tells 1t
to start running the program you've just loaded into its
memory.

Or you might type in "LIST" to get it to remember the whole
program and show it back to you, so that you can check it for

mlstakes.

...and how it "talks" to you!

How does the computer show you things?

Generally it shows you things and lets you know what it's doing
by printing messages on its VIDEO SCREEN.

— NOTE

So the keyboard of a computer 1is

rather like its eyes or ears, used

for receiving information and 1ts

video screen is rather like 1its

"mouth" -- which it uses for giving
information.,

In the case of your Wizzard computer, its video screen also
happens to be the screen of your TV set.

One more thing. When you tell the computer to RUN the program
stored in its memory, it doesn't forget it afterwards. So you
don't have to load it in again every time you want to run 1it.

The program stays in the computer's memory until you tell it to
forget it, or load in another program (for doing another job).

Until this happens, your computer will run the program as many
times as you like.

The only other thing that can rub out the program 1s to turn
of f the computer's power switch, or pull out its plug. This
will always give a computer instant amnesila.

In fact pulling out the power plug is the ultimate weapon -- a
sure~-fire way of showing any computer who's boss!

That's all for the moment, But here's another quick quiz.

15

QUICK QUIZ 3

1. What does a processor (or CPU) do? (tick one)
a. Follow the orders in your program
b. Talk to you
c. Make cake mixes
d. Disobey orders

2. What happens when Wizzard executes an instruction? (tick

one)
a. It kills it
b. It runs away with 1t

c. It obeys it
d. It remembers it

3. What 1s BASIC?

4. What does is mean when you load a program? (tick one)
a. You make it heavier

b, You put it into the computer's memory
c. You give it a 1long, cool drink
d. You see how long 1t 1s

5. What are you telling Wizzard to do when you type in the word
"RUN"? (tick one)
a. You're telling 1t to go faster
b, You're telling 1t to go away
c. You're telling it to execute the instructions 1in the
program
d. You're telling it to remember the program

6. What does Wizzard do when you tell it to "LIST"? (pick one)
a. It leans to one side
b. It recites the alphabet
c. It shows you the program you have loaded into its memory
d. It obeys the program's instructions

7. Why did Wizzard enter the sports carnival?

16

CHAPTER 4 —-- Teaching your Wizzard some tricks

By now you should understand a bit about how a computer works,
vYou have also unpacked and connected Wizzard to the power point
and the TV, so it is time to start getting some programs
RUNNING.

Programming is a bit tricky so we will go slowly, one step at a
time, with some explanation 1n between steps.

If everything is switched on, you should see the CREATIVISION
message on your TV screen, |

First, here is a picture of the keyboard:

Getting Wizzard to say HELLO

This simple program will make Wizzard say hello:

Use your keyboard to type these
lines exactly as they are

written here (we will explain
why they have to be typed this
way in a minute).

19 PRINT "HELLO"
20 GOTO 10

At the end of each line hit the
square marked RET'N on the
keyboard.

17

Typing mistakes are easy to fix

If you make a typing mistake, don't worry. It is easy to fix.
You can correct mistakes in 2 ways:

Firstly 1f you notice your mistake before you hit RET'N to end
up the line, you can simply go back to the place of the mistake
by hitting the square marked with a backwards facing arrow
(<-=) and type in the right thing instead.

If you don't notice the mistake until after you have hit RET'N,
you won't be able to move back to correct it using the arrow —-—
but DON'T WORRY. You can type the line in again, (correctly of
course), by usling the same number as the line with the mistake
in 1it.

This is one of the reasons we use line numbers. If two lines
have the same number at the beginning, the computer will ignore
the first line you typed in and only notice the second one.

Why we use line numbers

We explained earlier that a computer only does what you tell it
to and that it is important to tell it everything it needs to
know to run your program,

If someone tells you to put on your shoes and socks like this:

"Put on your shoes -- Oh I forgot, put on your socks first"”

You would know to obey the second part of the command first and
the first part -- putting on your shoes -- afterwards. But a
computer can't work this out, so you have to have some way of
telling it which commands to follow first, which to follow
second and so on,

You can do this by giving a number to each 1nstruction line 1n
the program,

All wizzard then has to do is follow them in order, starting at
the line with the lowest number and gqoing on to the one with
the highest number.

It always does the instructions in the order of their line
numbers, unless one of the instructions tells it to do
something else.

Do you just number the lines 1, 2, 3 and so on? Well you can,
but it's usually not a good idea. It's better to give them
numbers with gaps between them, like 10, 20, 38 etc.

18

Perhaps you have already guessed why:

If you don't leave gaps, there won't be any room for adding 1in
extra instructions later. And, quite often, you do have to add
extra ones in, because if you're like most people, you'll £ind
you have left some out!

Let's say, for example, that you discover you've left out an
instruction between two lines, If they're numbered "7" and "8",
vou're going to be in trouble, but if they're numbered "78 and
"gp", all you have to do is give the extra line a number in

between the two —-—- like "75",

Here are a few facts about instruction lines in a program:.

NOTE

Every instruction line in a program
must have a line number. We suggest

the numbers go up 1n steps of 10 so
you can add other instruction lines
later. Instructions on the Wizzard
must take no more than 25 characters
(including spaces) after the number.
However, you can squash up your
instructions by leaving out the gaps
between words 1f necessary.

Back to your program

Well the Wizzard is still waiting to do something!

So let's give it something to do with the program you've
already typed 1n.

Firstly, try giving it a direct COMMAND.

NOTE

A direct command is like an
instruction in a program, but 1t
doesn't have a line number., This
is because it is not part of a
program. It tells the computer
to do something with the program
and to do it straight away.

Commands can be included in program instruction lines as well
but they don't have to be in a line before the computer obeys

them,

19

NOTE A
One command is LIST -- this tells
Wizzard to show your completed
program on the TV screen,

If you've made no corrections, all Wizzard will do 1is show you
vour program as you typed it in, But 1f you had to retype a

line because you made a mistake the first time, you'll see that
the wrong line has been removed. |

8 NOTE
Another command is RUN, which |
d tells Wizzard to RUN your program |
by obeying the instructions you
have given 1it.

Type in LIST and hit RET'N to
| get a list of your program on
f the TV screen,

Then type RUN and hit RET'N
l to get your instructions
EXECUTED.

1f you typed the program in exactly as it appeared in the book,
you should see lots of HELLOs on the screen,

What did this program really tell Wizzard?

Your first instruction was:
19 PRINT YHELLO"

Can you guess what that means? Right! It is telllng Wizzard to
print the word HELLO on the screen for you to see.

- NOTE
Whenever you want Wizzard
to print a message on the
screen, you simply key 1n
in instruction line which
says PRINT and then gives
the message you want
printed, with quotation
marks (") at each end.

20

These marks (") must always go round the message you want shown
on the screen, or Wizzard won't print it,

The second line you typed was:

20 GOTO 140

You were telling Wizzard to go back to line 18 and start again.

That's why Wizzard printed HELLO not once, but over and over
again., And it will keep printing HELLOs until you stop it.

This is known as a programming LOOP. We will explain more about
loops in the next chapter,

For the moment, there are a couple of ways to stop the HELLOs.

One way is to turn off the power, which will make Wizzard
forget the program altogether. The other way 1s to hold the
CNT'L key down and at the same time press C, This stops the
program running without making “Wizzard forget it.

Use the second way now:
hold down CNT'L and

I press C. What happened?

The screen stopped, with the last few HELLOs still on 1it, and a
READY message to show that Wizzard is walting for further
orders,

Now do this quick quiz and you will be ready to go oh to
chapter 5 and learn some more programming.

21

QUICK QUIZ 4

1. Why do you give each line 1n your program a number? (pick

one)
a. To show how important 1t 1s

b. To be tidy
c., To teach Wizzard how to count
d. To show Wizzard the right order for following your

instructions

2. What 1s the difference between an instruction line and a

command? (pick two)
a. One is said in a firmer tone of voice
b. One is part of a program and the other tells Wizzard

what to do with the program
c. One is more informative
d. A command doesn't have a line number

3. Which is a better way to number instruction lines
l; 2; 3; 4, 5, etC oOr
19, 20, 36, 40, 50 etc

4, Why?

5. What 1s a programming loop? (Plick one)
a. The place where Wizzard hangs 1itself
b. A thing like a magnifying glass, to look at small

programs
c. What happens when your program says GOTO an earlier line

22

CHAPTER 5 -- Becomlng a programmer

As you already know, a PROGRAM is a list of instructions in
numbered lines telling Wizzard what you want it to do.

You also know that it's important to tell Wizzard everything
you want it to do, and in the right order.

Let's look more into how you work out a program, using the
BASIC language for your instructions,

Make Wizzard forget the
' last program by typing §
§ NEW and hitting RET'N

Now the memory is empty and you can start work.

We'll do some adding up first. If we wrote a PRINT instruction
of the sort we looked at 1in chapter 4, like:

1% PRINT "2+2"

it would just print out the part inside the quote marks ("). We
wouldn't get it to work out the answer. But we can get it to
work out the answer by making a simple change...

m NOTE
To make Wizzard work like a
calculator, give it the same
| sort of PRINT instruction, |
but WITHOUT the quote marks. |

Type in these two lines
EXACTLY as they are

here (and hit RET'N at
the end of each line).

13 PRINT 2+2
20 END

LLine number 1@ tells Wizzard to print the answer to the sum 2 +
2. And line 20 means just what it says -- END. This line tells

Wizzard that you have finished the program and 1t can stop
following instructions until you give 1t some more,

23

Now get Wizzard to do this sum, by running the program:

Type in the command

RUN and then press
the RET'N key.

If you typed in the program exactly as shown, Wizzard will have
obediently printed a 4.

Incredible, isn't 1t -- you've just got your Wizzard to tell
you the sum of 2 and 2! Aren't computers fantastic?

Adding another line to your program

Let's add another instruction line to this program. It's easy
because we've left plenty of space between the line numbers.

Instead of just printing the answer to our sum, 4, let's get
Wizzard to print out the sum as well, so it shows the whole
thing: 2 + 2 = 4,

You already know how to do this from the last chapter.

All we need is a line at the start of the program (before line
1) which says: PRINT "2 + 2 =" and Wizzard will print what's
between the quotes BEFORE it prints the 4.

The new line number must be lower than 18 1f Wizzard is to

follow that instruction first. We suggest number 5,

So key in the extra 1line
with this number (ending

it by hitting RET'N).
Then LIST your program.

It should now look 1like this:

5 PRINT "2 + 2 ="
1) PRINT 2+2 |
20 END

Let's run this program and see what happens. The screen should
say this:

24

Not quite right yet, is 1t? It would look better all on one
line. The way to do this 1s by re-typing line 5 like this:

5 PRINT "2 + 2 = ";

Did you spot the added semicolon at the end? It's important...

- NOTE -
A semicolon at the end of the

PRINT instruction tells Wizzard
NOT to shift its printing down

to the next screen line when it
has printed your message,

RUN the program now, and |}
you'll see the semicolon |

has fixed our problem.

The screen should show this:

2 + 2 = 4

Try this quiz before moving on to chapter 6.

QUICK QUIZ 5

1. How would you change our program to give you the answer to
the sum 5 + 37

2. How would you change the program to work out the answer to
the subtraction 7 - 47

3. What does an END instruction do? (Pick one)
a. Tell the Wizzard to shoot 1itself
b, Tell the Wizzard you're shooting yourself
c. Just tell it that your program ends there

4. What does a semicolon do when you add 1t to the end of a
PRINT 1nstruction? (Pick one)
a. Make the Wizzard pause for breath

‘b. Tell it NOT to shift down to the next printing line on
the screen

c. Tell Wizzard you don't gquite know what you're doing

25

CHAPTER 6 —-—- More programming

Drawings of the program

Here 1s a drawing of the program you gave Wizzard at the end of
chapter 5:

This drawing is called a FLOWCHART and it shows everything the
Wizzard does in the right order. A flowchart can be very handy
when you are working out programs,

There is something on the flowchart that you don't have written
in your program, It's the START sign.

Always put this at the beginning of your flowchart. It may not
seem much use with a simple program like this, but when your
programs become more complicated, it comes in very handy to
know where everything starts.

If you look at the chart, you should notice that the START and
END are in oval-shaped boxes and the other 2 instructions are
in rectangular boxes.

| N T L ol ——
It's useful to put rectangles round
simple instructions and ovals round
the START and END signs, because

flowcharts can get complicated when
you wrlite longer programs.

There are lots of different types of instructions, (you'll find
some of them later in this book) and it is important to be able
to tell quickly what type of instructions they are. You can do
this if you have different shaped boxes around them.

We will show you the different boxes you should use for special

instructions later. For the moment, all you have to remember
1s the oval and the rectangle.

Programmers usually draw up flowcharts then write out the
program with line numbers before they type in the instructions.
It 1s good practice to do this too, so from now on, you should
have a pencil and paper to help you with your programming.

26

Got pencil and paper handy? Right! We thought you might like
to tell Wizzard how to do some number tables., Here is a

flowchart of the program you can use:
'STARTfﬁ .;ﬂ_« : ASK FOR — HH; INPUT ;ﬁnh-gg_Hbﬁw_
em— NUMBER . NUMBER ,'

| . ,, NwﬁﬁfNTwmj

_ PROBLEM |
—

| ANOTHER
| NUMBER |

; IWBékméﬁ%mi
wemed ANSWER AND |
l PRINT IT |

The best way to work out the program from the flow chart 1is to
follow the arrows and give each box a line number, then work

out what your instruction line should be so you can get wlzzard
to do what's in the box,.

Let's do this one together.

We don't have to give START a number but the first box should
be number 10. In this box, Wizzard must ask for a number. So
the instruction line could be something like this:

19 PRINT "GIVE ME A NUMBER"

The second box involves getting a number for Wizzard to use i1in
the equation (this is the maths problem you want it to do).

“ L I ——
There is a special instruction
for this: an INPUT statement.

If you use it in the next line, it will look like this:
20 INPUT A

You can use any letter of the alphabet for the input -- not
just A -- but don't put a number in. It must have a letter,

Line 28 is telling Wizzard to let you type in a number -- any

one you like. When you have typed in your number, Wizzard keeps
it in its memory in a place called A.

27

A bit about variables

That last paragraph may seem pretty confusing so we thought you
might like to learn a little about variables before we go on.

Wizzard has a very efficient memory. It learns things {or
stores them) in various parts of its memory and glves each part
an "address",.

This is just like the addresses of different houses 1in a
street. And when Wizzard remembers something for you, it 1is
just like going to a particular place and fetching what it
finds there.

When we tell the Wizzard to INPUT A, we are telling it to do
two things. One is to let us type a number in., The other is to
put the number, whatever it is, away in its memory -- marked A.

When you use letters instead of numbers like this, you are
telling Wizzard to reserve a space in its memory for a number.
You can then change the number (making A = something else) and
Wizzard will do the same calculation for you with a different
number, Because you can change the actual number in A, A 1s
called a VARIABLE,

Meanwhile, back to our program...

The lines you have worked out so far are:

149 PRINT "GIVE ME A NUMBER"
29 INPUT A

The next box in the flowchart is where Wizzard shows you what
it is going to do with the number. This means that you have to
work out what you want Wizzard to do, then write an instruction
line (number 30) telling Wizzard to print it,.

Let us say you want Wizzard to multiply the number by 4. Try
this line:

3¢ PRINT A;" X 4 =";

This tells Wizzard to print the number that it has stored in A
and then print "X 4 =" after it (remember, the semicolon tells
it NOT to move its printing down to the next line). If the

number you enter is 8, Wizzard will show 8 X 4 =, when it
executes the instruction.

Did you notice that there were 2 semicolons in line 307

28

Good. The first one lets you use one PRINT instruction for 2
different types of printing,

Line 30 tells Wizzard to find the number in A, then print 1it,
then add the bit in quotes straight after 1it, so both parts of
the printing appear on the same line,

Clever - huh?

The next step 1s to get Wizzard to do the actual calculation

and print the result.

Arithmetic functions

Wizzard can add, subtract, multiply and divide, just like a
calculator.

But if you look at the special keyboard, you will £find no
division sign there. And if you just use an X for multiply,

how is Wizzard going to know when you mean 1t to be a
multiplication sign, and when you mean 1t to be the letter X7

Yes, we know people could work it out, but Wizzard isn't people
and it is too dumb. So, to make it absolutely clear for the
poor, stupid computer, we have a serles of speclal symbols for
the different arithmetic functions.

. . NOTE' Lo e r e R
We use an asterisk (*) for multiplying,
a dash (-) for subtracting (just like
the normal minus sign), a plus (+) for
adding and a diagonal or "slash" (/)

for dividing.

To tell Wizzard to work out 2 X 4, you would type in 2*4, 1If
vou wanted it to work out 6 divided by 3 -- can you guess how
to write 1t?

If you had 6/3 you were right. Now let's get back to this

program.

The next step (line 4¢) must tell Wizzard to do 2 things. It
must multiply the number in A by 4, and it must print the
answer, Can you work out how the line should go?

29

It goes like this:
49 PRINT A¥*4

The next box gets Wizzard to ask for another number. I know you
can already do this, so write line 5# as a PRINT instruction.

Looping around

When Wizzard has asked for another number you want it to go
back to step 20 (where you can type 1n another number to go
into A).

This is called a LOOP, and the easiest way to make such a loop
in your program is with a GOTO instruction.

' NOTE
When yvou find a loop in your
flowchart, an easy way to do
this is with a GOTO instruction

The instruction line will be easy. Just put this:

60 GOTO 20

The finished program

Your program should now look like this:

19 PRINT "GIVE ME A NUMBER"

20 INPUT A

3¢ PRINT A;" X 4 =";

43 PRINT A*4

50 PRINT "GIVE ME ANOTHER NUMBER"
63 GOTO 20

Type this program 1in
and LIST 1t so you can
check it and correct

any typing mlstakes.

Now don't be shy -- try running it! (Type in RUN and hit RET'N)

Wizzard has asked you for a number, you'd better type one in.

39

Why not make it 1. Type in 1 and hit RET'N.

Wizzard should have told you what 1 X 4 is and asked you for
another number,

Type in 2 this time, and again hit RET'N, Now 1t has told you 2
X 4, and asked you for another number -~- why not try 37

By typing in a different number each time, you will be able to
get Wizzard to go right through the 4 times table for you,

What's that I hear? You would like it to do another table?

OK, you can do this, but you'll have to change two lines 1in
your program: line 3¢ and line 4. Let's get it to do the 9
times table,

First, you'll have to stop the present program from running:

Hold down CNT'L and press C,
to stop the program but keep |
it in Wizzard's memory.

Now type in a new line 30:
3@ PRINT A;" X 9 =";
... and a new line 40:
4 PRINT A*9

Now type in LIST and press RET'N, and you will see your new
program on the screen,

Run it, and you will find that your Wizzard can now multiply
any number you give it by 9,

There is no quiz in this section. We think you've had quite
enough hard work for now!

Just glance through the list on the next page, which shows all
the things we've looked at so far. Then have a rest before
going on to the next chapter -- you've earned 1t!

31

WHAT WE HAVE LEARNED 50 FAR

Here's a summary of the things we have covered so far.

LIST tells Wizzard to show you the program as you have written
itl '

RUN tells Wizzard to execute the program - by obeying the
instructions in it,

PRINT tells Wizzard to print something on the screen, If you
put quotes around the thing you want printed, Wizzard will
print what'®s inside the quotes. To get it to work like a
calculator and print the result of a calculation, don't use
quotes. |

INPUT is an instruction that gets Wizzard to stop and let you
enter a number of your own choice,

VARIABLES are names for places where Wizzard can store
different numbers. An example of a variable 1s the letter you
use to tell Wizzard where to store a number you will INPUT.

GOTO is an instruction to get the Wizzard to jump to another
part of the program. If you say GOTO 20, Wizzard will go to do
the instruction on line 20. If the GOTO 20 instruction 1s on a
later line, this makes what is called a LOOP in the program.

If you hold down CNT'L and hit C, you will stop a program
running without making Wizzard forget it.

FLOWCHARTS are drawings of all the things you want Wizzard to
do in a program. A flowchart has START and FINISH 1in ovals and
all other instructions (that you know so far) 1in rectangles.

END tells Wizzard that there are no more instructions in the
progam,

A SEMICOLON in a PRINT instruction line tells Wizzard not to go
to another printing line. It lets you use one PRINT instruction
for printing two things, one straight after the other.

Wizzard can carry out calculations for you using these signs: +
for addition, - for subtraction, / for division and * for
multiplication. It will carry out other calculations as well,
but those are mentioned later in this book,

32

CHAPTER 7 - More on tables

There is a way to get Wizzard to work out number tables

automatically for you, without you even having to 1lnput any
numbers. |

> Remember we talked about variables <
> being addresses that Wizzard uses <
> to keep numbers 1in? <

We also saild that you could change these numbers and that was
why they were called variables. |

Well - when you wrote the program in chapter 6, you changed the
variable yourself each time you reached line 20 and had to
input a new number, This time we will show you how to program

Wizzard to change the variable for you, so that 1t will work
out the full table all by 1itself.

Let's do the 4 times table again.
The first line of the program will look like this:
14 A=1

This is the way you tell Wizzard
IN THE PROGRAM what is going to

be the value of a variable like
A, instead of having to enter

the value using an INPUT line.
The next step 1is to get Wizzard show you what it 1s doing with
A. You can do this in the next line.

This can be just like line 3¢ in the first program. It should
look 1like this:

20 PRINT A:" X 4 =";

Because you have told Wizzard that A = 1, it will print 1 X 4 =
when it executes this instruction.

The next line 1s simple:

390 PRINT A*4

Now we get a little more complicated...

33

We've now got to make Wizzard work out the next number for A,
which will be 2., The next time round 1t should make it 3, then

4 and so on. To do this we give it an instruction like this:
43 A=A+1

This looks strange, and would be wrong if you tried to put 1t
in an ordinary arithmetic problem. But remember here A doesn't
just stand for a number - it really stands for the address of
the number in Wizzard's memory. T

- | NOTE - - — T Lo
A=A+] tells Wizzard that the next number
for A must be one bigger than the last

one. So if the last number in A was 1,
the next one will be 2, and so on.

Now we need a loop in the program so that Wizzard will go back
to multiply the next A by 4. It looks like this:

58 GOTO 20
So your program will look like this when it is written:
19 A=l
20 PRINT A;" X 4 =";
3@ PRINT A*4

49 A=A+l
50 GOTO 24

Here .is the flowchart £for this programn,

START Yomemt PRINT
- | A;"X4="

WORK OUT ANSWER
AND PRINT IT

| MAKE
| A#A+l

Why not test this program out?

Type in NEW and press RET'N to get Wizzard to forget the last
program. Then type the new one in, just as 1t appears above.

Ready to run 1t? First check it by typing in LIST and pressing
RET'N. Then if it's allright, type in RUN and press RET'N,

34

Isn't it cute the way Wizzard just keeps on and on multiplying
numbers by 4? It will go on for ever unless you stop 1t --
doesn't that give you a feeling of power!

The flowchart shows this —-—- at present,the program has no END.

But we can get it to stop the multiplications automatically at
a given point (say after A=12), by adding a new instruction.

How to stop a loop going on for ever

Let's say you just want Wizzard to do the table up to 12 X 4
and then stop.

At the moment, the only way you can stop it is by holding down
CNT'L. and pressing C.

Do this now, to stop the
program so that you can

concentrate on what we
are going to tell you.

Ready? Right. What we have to do is tell Wizzard to stop when
the size of variable A has passed the value 12. To do this we
use a new instruction: the IF ... THEN instruction,

It will look like this:

45 IF A=13 THEN END

The IF ... THEN instructlon gets the
Wizzard to make a decision. It has
to look at something (here the value
of A) and decide IF 1t has reached a
certaln size (here 13). IF 1t has,
THEN Wizzard follows the instruction
on the rest of the line. But IF it
hasn't reached the size yet, then
Wizzard ignores the rest of the line
and "drops through®" to the next line.

We have made the IF ... THEN line 45 so that Wizzard will 1look
at it before looping back to line 28.

Why not try this modification to the program by typing in the
extra line now.

35

Type it in, then LIST the
program to make sure 1t 1is
there. If all is well,

try running your improved
program to see what happens.

You should have seen Wizzard do the "4 times" table up to 12 X
4, then stop by itself just as we wanted. (If it didn't, you
must have made a mistakel)

That was the effect of our new IF ... THEN instruction. While A
was less than 13, it let Wizzard keep on looping back., But as

soon as line 4¢ cranked the value of A up to 13, the second
part of line 45 suddenly sprang into action and forced Wizzard

to stop.

IF ... THEN is quite a powerful instruction. Because 1t lets us
tell Wizzard how to make decisions, and do different things
depending upon what it decides, it opens up all sorts of new
possibilities. We'll see more of these shortly.

Here's a quick quiz to do before we go on to write our own
guessing games 1in chapter 8.

QUICK QUIZ 6

1. How can A = A + 1? {(pick one)
a. Because A 1s stretchy
b. Because programming is silly
C. Because you are really telling

Wizzard to change the number in
A to the next number up.

2. Write a program to get Wizzard
to do its 13 times table, going f##_,f/

A |
- 4
up to 13 X 15 and then stopping. ﬁ-
Pping. ‘.l==i‘ 2
{\
\

3. What is an IF ... THEN instruction?

-

36

CHAPTER 8 — Guessing games

Here's a flowchart for getting people to guess a mystery

number :
| PUT IN MYSTERY jmmedpmmemed ASK FOR GUESS

"START)~
— — | INPUT GUESS |
CTTETINT NPUT GUESS
MESSAGE |

vES Y

NOTE o -
There is a new shape in this | MR | |
flow chart, It is called a : | PRINT :
DECISION DIAMOND, and shows f i YOU GOT IT!
where the computer must make | | | MESSAGE

a choice, One way of getting
it to do this is by using an .
IF ... THEN statement. ; [END

In this case, if the number guessed is right, Wizzard will say
YOU GOT IT! and stop. If it is wrong, Wizzard tells you to TRY
AGAIN and goes back to let you guess again.

Let's write a program from this flowchart., If the mystery
number is 7, it will go something like this:

19 A=7 |

29 PRINT "FIND MY NUMBER!"™
30 INPUT B

49 IF B=A THEN GOTO 74

5 PRINT "NO - TRY AGAIN!"
68 GOTO 30 |

70 PRINT "YOU GOT IT!™

80 END

Notice we had 2 variables in this program. One was A - for the
mystery number, the other was B - for the number you guess,

There is just one problem we have to solve before you can go
and get someone to play this game. When you've typed 1t 1in, and
probably LISTed it for checking, the program will still be
showing on the TV screen (complete with the mystery numberl).

37

So it is time to introduce another new instruction, one which
tells Wizzard to "wipe its screen clean". This will hide the

program from the guesser,

® NOTE
The instruction CLS (short for
CLear the Screen) 1is used to
tell Wizzard to rub everything

from its video screen.

You can use CLS as either a direct command, by typing it 1in
without a line number, or as a program line. For the moment,
let's make it into an extra line at the start of our program.

It will look like this:

5 CLS

OK, key in the complete
program now, and don't
forget line 5. Then

LIST 1t and RUN 1t...

How did the game go? It's a bit hard for your guesser to find
the number isn't it, because there are lots of numbers to

choose from.

Maybe we can get Wizzard to be a bit more helpful. A good
addition to our program would be to get Wizzard to tell the
guesser 1if the number they've picked is too big or too small.

Greater than and less than

We do this by using another IF ... THEN statement, wilth a
greater than (>) sign.

Let's replace line 5@ and add a few more:

58 IF B>A THEN GOTO 56
52 PRINT "TOO LOW!™

54 GOTO 30
56 PRINT "TOO HIGH!"

(Now that our programs are getting a bit longer, you can see
how useful it is to leave spaces for adding new llnes.)

38

OK, press CNT'L and C to stop
the program (unless your

guesser got the number), then
type 1n the extra lines. Now
LIST the program to check it.

Your program should now look like this:

20 PRINT "FIND MY NUMBER!"
38 INPUT B

4 1IF B=A THEN GOTO 74

50 IF B>A THEN GOTO 56

52 PRINT "TOC LOW!"

54 GOTO 30

56 PRINT "TOO HIGH!"

6d GOTO 30

78 PRINT "YOU GOT IT!

8@ END

Can you see what we've done? 1If B, the number guessed, is
equal to A, then line 4@ will send Wizzard down to line 7@ as
before. But if the two aren't equal, it will drop down to line
50 instead. o

Line 50 then looks to see if B 1s larger than A or not, If 1t
is, then Wizzard will be sent down to line 56. So 1t willl print
out the TOO HIGH! message, and then loop back (line 68) to let

you try again,

What happens in line 5¢ if B is not greater than A? Well, it
can't be equal to A, or Wizzard wouldn't have got to line 58 in
the first place. And if B i1s not greater than A, there's only
one possibility left -- it must be smaller than Al

So that's why our line 52 tells Wizzard to print out the TOO
LOW! message, and then loop back (line 54) as before to let you

try agailn.
I RUN the modified program
now, to see how 1t works

It's a lot more helpful now, isn't 1t?

39

By the way, instead of using the greater-than sign in our
second IF ... THEN instruction (line 58), we could have used a
less—than sign (). But we would have had to swap the
instructions in lines 52 and 56, to match the opposite way line
58 would have worked. |

You might like to try this
for yourself., Change the
three lines and then RUN

the program again to prove
that it still works,

The IF ... THEN instruction is pretty flexible, isn't 1t? By
using signs like equals (=), greater—than (>) and less-than
(<), we can make it check for all sorts of things.

Here's another quick qulz before we go on.

QUICK QUIZ 7

1. What does Wizzard do when you type CLS? (pick one)
a, Give you a clue?
b. Clear everything off the TV screen?
c. Put you at the top of the class?

2. What does B>A mean?
3. What does B<A mean?

4. What do you put on a flow chart to show an IF ... THEN?
@CD@@@@O@@@@@@@@

@@ESS M%ﬂ g

40

CHAPTER 9 - Making Wizzard do more of the work

That last guessing game may have been quite fun for someone
else to play, but you couldn't play it yourself, could you?
Because you already knew the number.

Now we're going to show you a way to make Wizzard "think of its
own number", so that you can play the game too.

The program you use will be exactly the same as the one you
used in the last chapter, except for line 1. Instead of
saying A = 7 (or any other number you choose), we are going to
use line 19 to get Wizzard to pick a number you don't know
yourself, '

Random numbers

We can get Wizzard to pick a number "at random" (in other
words, pick any number it likes) by using another new
instruction: the RND instruction, It looks like this:

14 A=RND (104)

This gets Wizzard to pick any number between 1 and 108, and
store it away as A. If you wanted a wider choice (such as
between one and 500), the line will have a bigger number in the
brackets, such as:

18 A=RND (508)

OK, type 1n your program

with this new line, then
LIST it and RUN it again

See what happens =-- each time you run the program, Wizzard will
pick a new number for you to try guessing. So now you'll be
able to play the game just like anybody else!

Doiqg things a.figed number of times

Remember in chapter 7 where we wrote a little program to get
Wizzard to work out a number table and stop at the end? We

used an IF...THEN instruction to work out when to stop looping,
when our variable A had become larger than 12,

Well that certainly worked, but now we'd like to show you a
rather neater way of looping around a fixed number of times.

41

‘This is by using a pair of new instructions, FOR and NEXT.

S NOTE .
The FOR instruction goes at the start
of your program loop, and the NEXT
instruction goes at the end.

The FOR instruction tells Wizzard that you want it to make the
following instructions part of a loop, and that a particular
variable is to be stepped up or down in size each time it goes
around the loop, until 1t reaches a certain value,

The NEXT instruction tells Wizzard where the FOR instruction's
loop ends,

NOTE
For every FOR instruction in your
program, there must be a matching
NEXT instruction after it...

Here's how the FOR and NEXT instructions would be used to
neaten up our number table program:

13 FOR A=1 TO 12 |
28 PRINT A;:" X 4 = ";
30 PRINT A*4

49 NEXT A

58 END

The FOR instruction in line 10 tells Wizzard that we want to
have 1t make a loop using the instructions that follow, and

that we want 1t to loop around 12 times with variable A=1 the
first time, A=2 the second, and so on up to A=1l2.

The NEXT A instruction in line 4 tells Wizzard that the FOR
loop ends at that line. Wizzard won't get to line 58 until it
has looped back to line 18 the required number of times,.

Try running this version of
the program for yourself,
to see how 1t works...

You can have any letter from A to Z for the "how many times
around the loop" variable used in a FOR instruction. We only
used A here because 1t was used before. Whatever letter you
use, it's known as the loop counter variable,

42

The FOR instruction is even more flexible than you might think
from this example, because if you want, it will let you step
the loop counter variable down instead of up each time 1t goes
around the loop. Not only that, but it will let you step the
counter variable up or down not just by 1, but by a larger
number if you wish,

You get it to do these things quite simply, by adding another
part to the instruction -- a part showing the STEP size.

For example, say you wanted our number table program to go
backwards, from 12 down, and you wanted 1t to work out the
answer only for the even values of A. You could do this by
changing line 1¢ to read:

19 FOR A=12 TO 2 STEP -2

This tells Wizzard that you still want to make it do the
following instructions as a loop, with A as the counter
variable, but that this time you want 1t to decrease A by 2
each time it goes around, starting with A=12 “and looping until
A=2,

Why not try changling 1line

19 to this, and RUN it
again to see the difference

The FOR and NEXT instruction pair are pretty flexible, aren't
they? They give you a neat way of getting Wizzard to do loops
a fixed number of times, even with the basic version of the FOR
instruction. If you add the STEP part, which is optional, they
let you do even fancier tricks.

Before we leave FOR and NEXT, you've probably been wondering
when you should use these instructions for a loop, and when you
should use an IF ... THEN instruction with a GOTO. That right?

NOTE
As a general gulde, FOR and NEXT are best i1f
you know in advance exactly how many times
Wizzard will have loop around. But IF...THEN
with a GOTO is better where you want it to

loop until something reaches a certain size,

But there's no rigid rule on using these instructions, so you
can try both ways for a particular program, and see which you
prefer, It's largely a matter of individual preference,

43

Adding REMarks to your programs

As your programs get more and more complicated, it is a good
idea to put headings and comments in them., Not for Wigzzard's
sake, but so that YOU can come back later and still see what

the program 1is supposed to do.

"This 1s easy to do. Just write a line with REM in the front,
straight after the line number, and Wizzard will know it is a
line for you to read, not an instruction.

Wizzard will automatically ignore
any line which has REM straight
after the line number. It simply

skips that line and jumps to the
next one.

For example in our number guessing program, you might want to
put in a line like this:

35 REM PRESS RET'N AFTER INPUT
This line reminds you that after typing in your guess number,

you must press RET'N or Wizzard won't know that you have
finished,

WHAT YOU HAVE LEARNT IN CHAPTERS 7, 8 AND 9

This 1s the new information you have learnt so far. Just run
through them to see if you can remember what each instruction
means, before you go on. (There's no Quick Quiz this time)

Here are the things we've covered:

IF ... THEN and declision diamonds

CLS. to clear the TV screen

> (greater-than)

< (less-~than)

RND to generate random numbers

FOR with STEP (optional)

NEXT |

REM for adding remarks to your programs

44

CHAPTER 1@ -- Saving programs on cassette

There has to be an easier way than typing 1n a program every
time you want Wizzard to run it. And there 1is.

The easier way 1s to save your programs on cassette tape. Then
all you have to do each time to want to run one is load 1t back

into Wizzard, straight from the tape. This only takes a minute
or two —-— much faster than typing it in again,

To do this you will need the optional Cassette Deck/Interface
for your Wizzard (Cat. No. Y-16087), and of course a cassette
tape. You don't need special tapes -- an cordinary audilo
cassette tape will do, although we do recommend that you use a
"low noise" tape of reasonable quality. |

Although normal C-60 or C~99 size cassettes are 0K, you'll find
it easier to get short tapes (eg C-10 or C-15) and record one
program on each side. This willl save you the hassle of having
to search through a long tape, in order to find a particular
program you want,

Dick Smith stores sell C-10 cassettes that are "computer
verified"™ to be free from faults (Cat. No. X-35@02). You can
also get ordinary C-18 and C-15 cassettes elsewhere (of course,
they won't be as nice, but that't your business).

The Cassette Deck/Interface attaches to your Wizzard on the
left-hand end, looking from the front. You c¢lip off the
Wizzard's end plate, and then connect the little 6-hole plug on
the end of the Cassette unit's cable to the 6-pin socket 1inside
the Wizzard. You can see the socket in this picture:

.-.-.-:;.r.r||lII--J.:--III;-.I-.I-.I-IIIT-I.:'-:'111--""'-""'-"-""'II".:..:..- ..

- ——] — & b — e my T Sl Tt ittt

45

Here's how you connect the two together:

Switch Wizzard off and turn it over,.
Locate the small plastic splgot on

the bottom, near the left hand end,
and turn it around until its screw-

driver slot is at right angles to
the end. Then you can pull 1t out.

Remove the left-hand end plate by
pushing it towards the back about
l19mm. Then pull 1t away to the left,
Plug the cable from the Cassette
adapter into the Wizzard's 6-pin
socket.

Sit the Cassette adapter alongside
the Wizzard and clip it on instead
of the original end plate. Then
re-fit the plastic locking spigot.

Now your cassette adapter 1s set up ready to SAVE programs from
Wizzard onto tape, and LOAD them back into Wizzard. But before
you try to do either, there are a few general things you should
know about Wizzard and cassettes:

NOTE
Before you try to LOAD or SAVE
a program, make sure you rewind
the cassette back to the start.

Some cassettes come with a plastic "leader"™ on the start of the
tape. This is usually transparent, and a different colour from
the usual dark brown of the tape 1tself. Unlike the tape, this
leader won't take any recording, so you have to make sure that
Wizzard doesn't try to record on it.

The best way to do this 1s to remove the rewound cassette from
the deck and use a pencil 1in the "take up" spindle hole to wind
it forward until the tape 1is showing in the front windows.

To SAVE programs on tape
Once you've got a rewound cassette in the deck, with the tape

ready to take a recording, it's really very easy to SAVE a
program that you've got in Wizzard's memory.

46

LIST your program to make
sure 1t 1s what you want,
2, Press both the REC and PLAY
keys down together.

Type in CSAVE and hit RET'N.

When the program is all saved, the cassette wilill stop turning
and Wizzard will show you the > sign and blink 1its little
cursor square again.

It's a good idea to remove the cassette and label the side
facing up in the machine, to remind you which program you have
saved there., Then put the cassette back 1n 1ts cover to protect
the tape and its magnetic recording.

To LOAD a program back into Wizzard from tape

T Al —

The process is equally simple when you want to LOAD the program
back into Wizzard's memory So you can use it agailn:

Put the cassette 1n the deck
with the side you want
facing up.

2. Close the 1id and rewind to

the start of the tape.

Type in CLOAD and hit RET'N.
Press the deck's PLAY button.

When the program has been loaded

into Wizzard's memory, the tape
will stop. You can check that 1t

has been properly loaded in, by
getting Wizzard to LIST 1t

for you.

Using the Cassette Deck/Interface
can save you a tremendous amount
of time and effort in loading

and saving your Wlzzard programs.
It really lets you get the most
out of your Wizzard as a

serious personal computer., |

477

CHAPTER 11 ~- Subroutines

As your programs get longer and more complicated, you'll quite
often find that you want Wizzard to do the same sort of thing
at different points in the program. 5S¢0 repetition starts to
creep in: the same instruction line, or a group of lines, crops
up a number of times in the program.

This is pretty wasteful, isn't it? You'd think there would be
some way that you could put in the line or lines just once, and
have Wizzard use it or them whenever 1t needed to.

Well, there is a way. It's called making the part of the
program that you need to use over and over into a subroutine.

- NOTE
A subroutine 1is a part of vyour
main program which is separate
from the rest, and "called" or
jumped to from various places
in the main program whenever
it 1s needed.

Let's look at an example. Here 1s a Jittle program which can be
used to keep track of how much money you've got in your cheque
account:

18 CLS
20 PRINT "YOUR BALANCE";
3¢ INPUT B

A9 PRINT “"CHEQUE (1)"

56 PRINT "OR DEPOSIT (2)";
6¢ INPUT C

7¢ IF C=1 THEN 100

8¢ IF C=2 THEN 200

90 GOTO 40

16¢ PRINT "HOW MUCH";

11¢ INPUT A

120 B=B-A

130 GOTO 300

20@ PRINT "HOW MUCH";

21¢ INPUT A

220 B=B+A

3¢9 PRINT "BALANCE NOW ";B
319 GOTO 40

*

Now 1f you look at lines 100 and 208, you'll see they are
exactly the same, So are lines 114 and 214.

48

To remove this wasteful duplication, we can take out these
lines and have just one pair of them, separate from the main
program. We do this by giving them line numbers much larger
than those in the main program -- like 90@¢ and 910, for
example:

9@ PRINT "HOW MUCH";
913 INPUT A

Now how do we get Wizzard to jump to these lines from the mailn
program, when it should? And even more importantly, how do we
get it to jump back to the right place in the program, when it
has carried out these instructions?

As you've probably guessed by now, we use two new instructions:
GOSUB and RETURN.

GOSUB tells Wizzard to jump
to a subroutine from the main
program. RETURN tells it to
jump back to the main program
at the end of the subroutine.

So in place of our old lines 10@¢ and 119, all we need now is
the line:

108 GOSUB 9040
And in place of our old lines 200 and 218 we need:

200 GOSUB 9420

And to make sure that Wizzard will go back to the main program
properly each time it goes to the subroutine, we need this line

at the end of the subroutine itself:

920 RETURN

Why not type 1n this program
now, with these changes.

Then RUN 1it, to prove to
vourself that it works.,

It works, doesn't it? But most likely at this stage you're
still not quite sure how 1t works.,

49

Perhaps you're wondering why we couldn't use an ordinary GOTO
instruction to get to the subroutine, instead of the GOSUB.

The answer 1is that GOSUB is really a specilal sort of GOTO,
which not only gets Wizzard to jump to a different place, but
also gets it to remember where it's jumping from. So when 1t
gets to the RETURN instruction at the end of the subroutine, it
will know where to return to in the main program.

If we jumped to the subroutine with an ordinary GOTO, it
wouldn'!t be able to RETURN, because it wouldn't have told 1t to
remember where it came from. Get the idea?

The important thing to realise is that a subroutine is a part
of your program that Wizzard jumps to any number of times, from
different parts of the main program. But each time it finishes
doing the subroutine, it RETURNs to the right place in the maln

program,

What 1is the right place? Why, the line after the one with the
GOSUB that sent it to the subroutine.

Here's a simple little program which should make this clear:

5 CLS

18 PRINT “"LINE 1"
20 B=2

39 GOSUB 1@¢9

4¢ PRINT "LINE 3"
5@ B=4

60 GOSUBR 1040

7@ PRINT "LINE 5"
8¢ END

10¢ PRINT "LINE ";B
119 RETURN

Try typing in this program

and RUN 1it.

See what happened? Wizzard printed out 5 lines, with the
first, third and fifth lines done by the main program, and the
second and fourth lines by the subroutine (lines 108 and 110).
Using GOSUB and RETURN, you can use subroutines to make your
programs really neat and tidy.

Now do this quick quiz before you go to the next chapter,

50

QUICK QUIZ 8

1. What 1s a subroutine? (Pick one)

(a) A program to control a submarine.
(b) A part of your program that is used a number

of times, at different points in the main program,
(c) Part of your program that isn't quite as good
as the rest.

2. When 1s 1t a good 1dea to use a subroutine? (Pick one)
(a) When you want to control a submarine.

(b) When you're not very good at programming,
(c) When you find the same 1instructilion line (or lines)

cropping up at different places in your program.
3. Why can't you jump to a subroutine using a GOTO instruction?

4., How many times can you jump to a subroutine from your
maln program?

5. Which instruction must be used to end a subroutine?
(Pick one)
(a) END
(b) STOP
(c) RETURN
(d) GO BACK

Whenever something has to be done
over and over again...

51

CHAPTER 12 —-- Storing data 1in your programs

Sometimes you'll want to store some data in a program, so that
Wizzard will be able to use it while the program is running =--
without asking you to type it in from the keyboard.

This is done using another new pailr of instructions: DATA and
READ.

- g ' NOTE

The DATA instruction gives you
a place to store data (numbers,
words and so on) in a program,
The READ instruction tells
Wizzard to get the data from
your DATA line or lines.

Let's look at an example which shows how DATA and READ are
used. Say we want a program which stores a list of numbers, and
checks any number you type in to see 1if it is one of those it
has on the list. The numbers on the list might be customers who
haven't paid their bill, for example, or they might be the
numbers of stolen credit cards. Here is a simple program which
will do this:

18 CLS5
20 DATA 132,547,798,405,634

3% PRINT "CUSTOMER NUMBER";
4% INPUT N

583 C=1

od READ D

730 IF D=N THEN GOTO 200

8@ C=C+1

9¢ IF C<6 THEN GOTO o0

108 PRINT "OK - NOT LISTED"
113 END

209 PRINT "BAD - ON LIST!"
21 END

The list of numbers is stored in line 28, as you can see, The
word DATA at the beginning of the line tells Wizzard that the
rest of the line contains data, which will be used later on.
The commas between the numbers are simply to separate them, SO
that Wizzard can tell them apart.

In this case there are only five numbers, so they all fit in a

single DATA line. If we had more, they would probably have to
be put into a second DATA llne,

52

Did you notice that the DATA line comes right near the start of

the program, well before the READ instruction in line 68? This
1s important!

NOTE ——
The DATA line or lines must be
before the READ line in your
program, or Wizzard won't be
able to read the data properly.

Can you see how the program works? Line 3¢ asks you to type in
the number you want checked, while line 4¢ brings in the number
you type and calls it N,

Line 50 now tells Wizzard to think of a variable C, and give it
a value of 1. We'll explain the reason for this in a moment,

Line 60 is our READ instruction, which tells Wizzard to read a

data number and call it D. The first time it does line 68, it
will read the first number in line 20.

Line 70 now gets Wizzard to check and see if N and D are the
same, If they are, then it jumps down to line 208 to print out

the "BAD - ON LIST!" message. But if they're not the same, 1t
goes to line 84.

LLine 80 tells Wizzard to increase C by one, so since 1t started
as 1 (from line 5¢), it will now be 2, Then line 94 asks it to
check C, to see if it is still less than 6. If it 1s, Wizzard
is sent back to line 60 to read another number from the list,.

Line 6¢ then gets Wizzard to read another number from line 28,
which line 7¢ will again compare with N, If they're the same
this time, it will jump down to line 20¢. But if they're still
not the same, lines 8¢ and 99 will send it back to try a thilrd
number on the list. And so on...

NOTE
What we're doing in lines 68, 74,
89 and 9@ is getting Wizzard to
keep reading the numbers in the
list, until it either finds one
that is egual to N, or reaches
the end of the list.

How does it know when it has reached the end of the list?
That's the reason for lines 58, 8¢ and 99. We're uslng the
variable C to count the number of times we go around our loop.

53

If we try to go around more than 5 times, line 80 will make C
equal to 6, so that line 90 will stop the looping back. Wizzard
will drop down to line 108, and print out the "OK - NOT LISTED"
message.

Note that the number we compare C with, in line 94, is 6
because this is one bigger than the number of numbers 1in our
list. If we have more numbers in the list, line 9§ would have
to be changed.

OK, why not type 1n this program
and RUN it a few times, to see
how it works. Try typing 1in a

humber that you khow 1s on the

list, the first time you RUN it,
then try typing in a number that
vou know isn't on the list.

Not bad, is it? Wizzard seems to take no time at all to check
the number you type in against those on the list, and gives you
the verdict as soon as vyou've finished typing in.

The only problem at the moment 1s that you have to RUN the
program again, each time you want 1t to check another number.
This is a bit clumsy.

There has to be a neater way, and there 1is. But we have to add

a third new instruction, to tell Wizzard that we want it to go
back and start READing from the start of the DATA line agailn.

The instruction to do this 1s RESTORE.

_— NOTE S—
RESTORE tells Wizzard to go
pback to the start of vyour
DATA line(s), before 1t does
a READ instruction.

The place to add the new instruction is between our existing
lines 20 and 38, so we can make 1t line 25:

25 REST<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>