DICKSMITH’S

a B ™ h B
a &8 &% 8 & & & B ¥ E § &2 B+
" ® @8 E & 8% =& & B B 2 =" °¥°
s &4 8 & & ®BE 8 € 8 8 A n»
N & ## & B BEBE B & & & &
B & 8 B E & § 8 =B 2 &
4 & 34 & B BE B B A =
i H & 2 R B B & B B
5 WM ¥ & B B A B R
K A& HE B R B BE R B N
A W N M N HE B X E
E E E H K »» ¥ E =m »
- K

Cat. B-6195

FOREWORD BY DICK SMITH

Hi! I guess if you're reading this book, it's because you've
either just bought a Wizzard computer, or are thinking of
buying one. So I'd like to welcome you to the fascinating world
of computers.

It's hard to describe my excitement when we were presented with
the chance to sell the exciting new Wizzard computer in
Australia and New Zealand. Because of the Wizzard's incredibly
low price, I knew that it would glve many more people than ever
before the opportunity to get familiar with, and confident
with, computers. Particularly kids -- and I know from my own
daughters that all of our kids are going to HAVE to get along
with computers. Their world is going to be full of the things,
so I believe it is tremendously important for us to help them
become the masters rather than the slaves!

To ensure that the Wizzard really would help everyone learn
about computers, though, we needed a REALLY GOOD introductory

book to go with it. One that didn't assume that you already
knew quite a bit about them, that didn't bamboozle you with a

lot of technical jargon, that gave clear, easy to read
explanations without "talking down". And above all, one that
avoided the terribly boring, serious tone that always seems to
creep in around computers.

In short, we needed a book that really would help people use
the Wizzard to understand computers, and would make this both
easy and FUN!

That then was the challenge I set Jim Rowe and Sue Robinson --
to come up with a better introduction to computers than I've

ever seen before, Not an easy job, but I think they've managed
to do it in this "Fun Way into Computers" book.

So read it for fun and enjoyment -- and learn qulte a lot about
computers at the same timel

Ditk Srath.

ERRATUM:

Please note that initial shipments of the
Y-1605 Wizzard BASIC cartridge exhiliblt a milnor
peculiarity concerning the RND function,
described on page 41l.

With these BASIC cartridges, the number
guessing program on page 39 will not run
‘properly when the new line 10 is typed 1n as
shown on page 41. However normal operation of
this and similar programs using the RND
function can be achieved quite simply, by
adding this extra line: .

15 A = INT(A)

In other words, whenever you use the RND
function to generate a random number, turn the
number into an integer using the INT functilon

before doing anything else.

National Library of Australia Card No.
and ISBN @ 949772 12 7

COPYRIGHT (C) 1982, DICK SMITH ELECTRONICS

The material in this book 1s protected by copyright. It may not
be legally reproduced, stored in a retrleval system,

transmitted or copied by any means —-- whether electrical,
magnetic, photographlc or other technology —-—- without specific

written permission from the publisher. All such rights are
reserved by Dick Smith Electronics Pty Ltd, Sydney, Australia.

11

DICK SMITH'S

¥V mv@AV
COMPUTERS

USING YOUR WIZZARD

Written by Jim Rowe and Sue Robinson.

Cartoons by Allstalr Barnard

PUBLISHED BY DICK UMITH ELECTRONICS PTY LTD,

SYDNEY , AUSTRALIA

II1

READ THIS FIRST!

Before you unpack your Wizzard and start putting it together,
take a quick look at your TV set, Particularly the aerial

socket around the back.

@

If you are lucky, ®
it will look like this:

...and you won't need to read any more of this page.

But if it doesn't, and
looks like this instead:

don't worry, you can still use the Wizzard, but you will need
at least one extra gadget called a BALUN. In fact, you'll
probably also need a second one, but slightly different.

Both types of balun are available from any of the Dick Smith
stores and many of our resellers. They cost around $2.00 each.

You will need a "75 ohm to 3048 ohm"
TV-game type balun. Qur L-4454 balun

ig suitable and looks like this:

The other balun you are likely to
need is a "30¢ ohm to 75 ohm" balun,
Our L-4456 balun is one of these;

it looks like this:

vou'll find out how to use these baluns to connect the Wizzard

to your TV on page 8, but we wanted to warn you about the
possible need for them, to save you being disappointed later,
There's nothing worse than starting something, only to find
that you can't go on because you haven't got a special part.
Especially as you generally find this on a baturday afternoon,

when all the shops have shut!

1V

LIST OF CONTENTS

CHAPTER

l - WhataCOmpLIter iSn't NN E R EE EE N N E N I I AR R A R I

2 - Getting your WiZZafd gOing 9 5 8 0 O P PP O D LD S E O OB O L L LS

3 —= A bit more about COMPULErS .ccceecesvsccnccsscsocsnssssos

4 -- Teaching your Wizzard some tricCKkS ..cescesessvcccces

5 - Becomingaprogrammer > & & & & 5 & 5 0 8 6 &% 8 0 & S & D e s B s> S

6 _— More programming & & & & & & & & & B & 8B 0O 0 b e b PSEES D

7 — More On tables -l'.l‘..llllll-liiililll'lllllii'..iili

8 —— GUESSing gamES ® & & 8 & P B O P B0 B OO P O P S S S SSEEEea e s

9 —— Making Wizzard do more of the WOrk ...cceccescccccccas

13 —— Saving programs on cassette ...sccccevos000s0sascoce

ll - SUbrOUtineS ® & » & & & & & & 5 9 & 8 & 8 & 4 " & & 80 PSS B BN RS EDE

12 -- Storing data 1n your ProgramsS ..ceceececsscssscossscnaoscs

13 -— GEtting Wizzard tO play a tune ® B 8 9 2 8B &8 6 8068 S S ss P

14 _—— WhiCh COIOur w0u1d you 1ik3? .I.llll.lll.lll...lillﬂl

15 —— Drawing on the screen (graphicCsS) .eceeceeescssccssssss

16 __Abit more abOUt Wizzard's mathS "8 P 5 8 S E PSSO e

1.7 _-—— Some fil’lal Comments Y EEEEE R E I I I I I I I I A

Appendix A:

Appendix
Appendix
Appendix

Appendix

B:

What the unfamiliar words mean .ceceessccecocase
A summary of Wizzard's BASIC cesrcstsarscronan
Wizzard's error messageé csecescssssscccsuons s e
Wizzard's ASCII character codesS ..cevecccnsnas

Answers to quick quiz questions .c.ceecscsscccee

PAGE

1

4

11

17

23

26

33
37

41

45
48
52
56
61
65
710

74

75
77
82
84

85

CHAPTER 1 -- What a computer 1isn't

First of all, forget everything you've heard about computers
being electronic brains -- they're not.

Computers can't think like you and I. The only thing they can
really do 1s obey commands, like a trained dog (which may have

a brain -- but a genius 1it's not).

T
Just as you traln a dog to sit g(jD)b
or fetch, you can train a Z

computer to add numbers
together or store 1nformation

for you. |),J.J

Only it can do these things
FAST.

Computers do seem to be able to do
complicated and impressive tricks.
But remember, they can't do
anything without 1instructions —-
step by step -- from a human being.

Is a computer really just a super fast dum-dum then -- all
"muscles" and no brain?

In a word —-— vyes!

A computer can't think for itself. It does cxactly what it has
been told to do.

Let's 1magine that you move to a new town -- a town that you
haven't visited before. And you have to work out how to get to
the local shops, the school, the railway station etc.

It won't be easy. But after a lot of mistakes, you'll finally
work out the shortest way of getting to each place.

Now that you have worked it all out, you can save other people
the same trouble. Just give them a set of simple 1instructions.
For example, to get to the railway station you might write the
following:

1. Turn left outside the front gate |
2. Walk along the street until you reach the fire station.
3. Turn left and you'll find the station 100 metres along,

on the right.

To get there, they won't really have to think, just follow your
instructions.

In a similar way, when a computer does anything, no matter how
complicated, it is simply following a set of step-by-step
instructions. This is its "PROGRAM".

When you give the computer the step-by-step instructilons it
must follow to do a job, you are "PROGRAMMING" 1it.

So think of a computer as
a sort of super tast,

electronic slave.

A slave which can do

all sorts of useful
things for you, providing
you first tell it exactly
how to do them.

Just before you unpack your Wizzard computer and get going with
it -- try testing yourself with the simple questions on page 3.

Chapter 2 will tell you how to put the wizzard together.

QUICK QUIZ 1

1. What can a computer work out for 1tself?

2. What does a computer actually do? (Tick one)
a. Tell us things we don't know
b. Figure out the answers to our problems
c. Just follow our instructions, or somebody else's, and
do it faster than we can

3. What do you call the set of instructions we glve a computer?

4., Why did the computer cross the road?

5. What must you remember when telling a computer what to do?
(Tick the item or items that are right)
a. Ask 1t nicely
b. Tell it in detail everything you want 1t to do

c. Don't swear at 1t
d. Get your instructions in the right order
e. Be sure to speak clearly to it

Now turn to page 85 to check your answers. If you have got
anything wrong, go back through chapter 1 until you fully
understand it. Then you will be ready to go on to chapter 2.

CHAPTER 2 -- GeEPihg_zouq Wiz;ardlgoiqg
This chapter will tell you how to get your Wizzard going, so
you can try your hand at some programming.

The Wizzard is a very powerful little computer and it's ideal
for learning about programming.

It costs much less than most computers, it's really easy to
connect up, and just as easy to use,.

The first thing to do is unpack your Wizzard from its box...

What you get
Your Wizzard consists of 4 main pieces:

1. The Wizzard console itself. This has the two hand control
units, making up the keyboard, a cable coming out of the back
for connection to the aerial switch box and your TV set, and a
socket on the back for the cable from the power adapter unit.

llllllllllllllllllllllllllllllllllllll

A - e

It has another socket on the right-hand side, to plug in your

programming cartridge. This socket will also accept games
cartridges, which have already been programmed.,

There's an on/off switch and a RESET button on top, but more
about these later.

2. The power adaptor unit: P g, Y

This has a cable on one end, which plugs into the power poilnt,
and another cable which plugs into the back of your Wizzard at
the other.

3. The aerial swltch box:

This has a short cable
and plug, which plugs
into the aerial socket

on your TV set. It also
has two sockets: one

to take the plug on

your TV aerlal cable,

and the other to take

the plug on the

Wizzard's output cable.
There is a sliding switch
on the top, to let you
connect the TV to elther
the aerial (for normal
reception) or to the Wizzard,
without fiddling with plugs.

4. The BASIC cartridge:

This plugs into the socket on the side of your Wizzard and
tells the computer how to understand your programs, which are
written in simple BASIC language.

And for keeplng records...

Wizzard does not have a very big memory and 1t forgets the
instructions you have given it whenever you turn 1t off,

Sometimes you will want to use the same instructions agaln and
again. And it will be a nuisance to have to Keep telling them

to Wizzard every time you want it to do that job.

Wizzard's Cassette attachment is an optional extra but it 1is
well worth having, so that you can keep a record of the
programs you have written for Wizzard. (We explain how you set
it up and use it in chapter 10).

If you get the cassette attachment, it is a good 1dea to also
get some Dick Smith C-10 cassette tapes to go with 1it.

These look like ordinary cassette tapes, but they are speclally
designed for recording your lists of instructions (PROGRAMS) 1n

the same way as an ordinary cassette records music,

Putting 1t all together

First of all, place your Wizzard in a convenlent place,
somewhere in front of your TV set. It should be within a couple
of metres of a power point.

Make sure it's also where you can sit down 1in front of it
comfortably, for hours on end., Computers are like good books --

once you start, you don't want to stop!

Now take the power adaptor unilt
and plug the cable with the

in this book,
this sign means
"do this yourself"

small round 5-pin plug into the
socket on the back of Wizzard.

Be careful, don't force it. It will only plug in properly with
the pins towards the bottom, and when you have them right 1t

slips in easlily.

Put the power adaptor 1itself behind the Wizzard, or under the
table on the floor -- somewhere out of the way, but where the
cables won't be strained or pulled out accidentally.

Then plug the adaptor's second
cord, with the 2-pin power
plug, into the power point,

You can turn on the power point
at this stage, it won't do any
harm. Now take a look at the
back of your TV set, where

the cable from your aerial
connects to 1it.

If the back of your TV set has a round aerlal socket (see the
"READ THIS FIRST" section at the front of the book), just:

Plug the cable from Wizzard's
aerial switch box 1nto 1t,

Then plug the TV aerial lead
into the "aerial" socket on

the switch box, and the lead
from Wizzard into the "game®”
socket.

from TV
aerial

from Wizzard

If your TV has a couple of screw terminals instead of the round
socket, you will need to use the baluns mentioned in the READ
THIS FIRST section. But don't despair. There's no real problemn.

Use the "75 ohm to 30@ ohm" TV-game type balun (L-4454) to
adapt your TV set's aerial terminals so that they take the plug
from the Wizzard's aerial switch box. Here's another picture

of 1t

The wires with the "“spade"™ lugs connect to the terminals on
your TV, while the socket at the other end takes the plug from

the Wizzard's aerial switch box.

You'll probably need the other balun,
the "3¢06 ohm to 75 ohm" type (L-4456),
to adapt your twin-lead aerial cable
so that it can still connect to the
switch box. Here's another picture

of the balun we mean:

The round plug on one side goes into the aerial socket on the
switch box, while the screw terminals on the other end take the
wires from your TV aerlal cable,

from TV

So if you've had to use aerial

the baluns, your connections
should look like this:

from Wizzard

Turn on your TV and set the
channel selector to channel 1

in the normal (VHF) channel
range.

Also set the Wizzard's aerilial switch box to the "game"
position.

You're now ready for the last big step: plugging the BASIC
cartridge into the Wizzard. But before you do this, make sure
the Wizzard's on/off switch is in the OFF position.,

In fact you should always make sure this switch 1s in the OFF
position before you plug in or remove a cartridge from your
Wizzard. Otherwise either the Wizzard itself, or the cartridge,
may be damaged and you won't be able to use it agaln until 1t
1s fixed!

Switch off the Wizzard then

plug 1n the BASIC cartridge
with its label facing up.

Again do thilis carefully, so you don't damage anything. Push 1t
all the way in, so that the groove 1is in line with the edge of
the Wizzard,

If you've got the cartridge around the right way, and properly
lined up, it slips in easily without too much effort.

Once the cartridge is in place, you can turn on the Wizzard

again. This time you should be greeted by a green picture on
the TV screen, showing this message 1n black:

CREATIVISION BASIC

BY VTC
COPYRIGHT 1982

>H

Now see if you can do this quick quiz before going on to
Chapter 3, which tells you more about how your Wizzard works.

QUICK QUIZ 2

1. Why might you need baluns to hook up your Wizzard? (tick
one)

Because your power point is the wrong colour
Because your telephone 1s too far away

Because your mother likes the look of them
Because your TV set has the wrong sort of aerial socket

0,0 T Y
L

2. What must you do to your Wizzard before you plug in the

BASIC cartridge? (tick one)
a. Say "Hold still, this will ticklel™®

b. Turn Wizzard off
Cc. Switch off your TV

3. What channel should your TV be on?

4. Why couldn't the Wizzard talk to his TV set?

10

CHAPTER 3 -- A bit more about computers

In Chapter 1 we explained that a computer was like a high-speed
electronic slave., Well it is, in the sense that 1t does exactly
what you tell it to do -- and 1t does 1t very quickly.

But even though it 1s so quick, 1t is really far more stupild
than any human slave could ever be.

It will do exactly as it is told but it won't do anything
unless you tell 1t to!

Perhaps the main reason why people find computers a little hard
to get used to is that they usually obey the instructions 1n a
program in much less time than it takes to work out or give

them those instructions.

And that can seem pretty nifty!

The main thing to remember about the way a computer works 1s
that it can do only two of the many things that we can do with

our brains.

We can learn, remember, have ideas, work out answers to
questions, think of Jjokes and all sorts of things.

The computer can only remember (using its MEMORY) and obey
orders (using its PROCESSOR). But it does those two things

very quickly.

Now because a computer has absolutely no intelligence, it can't
decide anything from what it has done before,

It can't guess either, or work something out for itself when
vou don't explain it properly.

It can't even remember anything unless you tell it to.

So the instructions in its program must be very clear and
complete, right down to the smallest detall.

It relies on YOU to do the thinking...

Sounds easy enough, doesn't it? But is isn't quite as easy as
it seems. Explaining something to a dum-dum can be tricky!

11

Clever as we humans are, we are just not used to explaining
things clearly or completely. And of course we don't have to be

all that careful when we're talking to another person, because
we can rely on them "knowing what we mean".

But this isn't good enough when you write a computer program.
So what usually happens when you try it out is that you find

the computer "gets it wrong®.

Or it doesn't do that job at all -- it does something entirely
different!

When this happens (and it does all the time, even with
experienced computer programmers), it is almost NEVER because
the computer has made a mistake.

At least 999,999 times out of 1,000,008 it is because YOU, the
programmer, have blundered.

You'll have left out an important step, or told it to do one
thing when you should have told it to do the opposite, or
something like that. And the computer, being a completely
obedient dum-dum, will do EXACTLY what you tell it. No more,

and no less.

Here's a very simple example,
Suppose you want the computer
to add two numbers together,
say 2 and 2. Like most of us,
you'd simply tell the computer

to take the first number and R ¢
add the other one to it. But '
if you write a program to do
just that, you'll find nothing
seems to happen. Why?

LGS,

Because you also have to tell 1t
to show you the answer...

With another person, you wouldn't need to tell them this,
because if you simply said: "Add 2 and 2", they would assume
that you also wanted them to tell you the answer, But a
computer can't assume anything, so you have to work out and

tell it every single thing you want 1t to do,

12

Funny, isn't it? We humans are supposed to be the bright ones,

but a stupld computer can show us up every time, simply by
doing exactly what we tell it!

So a machine is forcing you to think and explain yourself more
clearly. If you don't, it won't do what you want!

LOADING in, and RUNNING programs

OK, you may say, you get the message about computers being
dumb, so that we have to tell them every little thing we want

them to do. And you see why that forces US to be much more
careful than if we were teaching another person how to do

something. But what exactly does a computer program look like,
and how do you get the computer to do what 1t says?

We'll start looking more closely at programs themselves
shortly. For the moment, just think of it as a list of simple
instructions. Like DO THIS, THEN DO THAT, and NOW DO THE OTHER.

IMPORTANT
You get the computer to obey your
program by first loading the
program of instructions into
the part of the computer known
as 1ts MEMORY.

What it does is simply store your program, so that you don't
have to keep feeding it into the computer over and over again.

IMPORTANT
When a program 1s loaded and in
the computer's memory, you then
get the other main part of the

computer -- called a PROCESSOR
or "CPU" (short for "Central
Processing Unit") —-- to follow

the instructions in the program.
This 1s called RUNNING the
program.

It RUNs your program by dolng two simple steps over and over
again. First it FETCHES the first instruction from 1ts MEMORY
(which is just the same as you do when you remember something
~- only much faster), then 1t looks at thilis instruction and
does what it says. This 1s called EXECUTING the instruction.,
Then 1t fetches the next 1nstruction, and executes it too. Then
it fetches the third instruction, and executes it. And so on...

13

Not all that complicated, is it? Just a simple matter of
looking at each instruction, and doing what it says. The main
thing to remember 1is that it all happens very, very fast.

How YOU "talk" to the Wizzard...

You can load the program into the computer's memory in a
variety of ways. The first time round, you have to spell it out
by touching the letters on the computer's special
touch-sensitive keyboard. Once it's in, though, you can get the
computer to SAVE it for you by recording it on a cassette tape.

This is the same thing as telling the computer to learn the
program so that 1t doesn't forget it.

From then on, all you have to do is LOAD the program 1in agailn
from the tape, each time you want the computer to do that job.
The computer will remember how to do 1it.

Now a computer doesn't have ears to hear with or a mouth to
speak with like we do. So we have to use a different way of
COMMUNICATING with 1it: typing on 1ts keyboard.

Computers are not even bright enough to understand English
(which is FAR too complicated for them) so we have to learn a
language which IS easy enough for them to follow.

Different computers understand different languages, but the
Wizzard can follow programs written in a language called BASIC,
which is very easy to learn because it is a lot like English,

These are some of the differences between people and computers:

ZX 15 g rRG TR
LS IeAL AMSWER = 15, 5O w Y
* g o

LIFE
FTH PIMIENSIOMNAL PRREH LAY > FRICE
+ HUBSLES CONSTANMNT = IR K

57 x € TAN 57° RSKI BRSIC
J7+ 15 PARSECK T STEED °F

VIRPEQ NPT

AUDIO INPUT

AUDIS CUTPUT

14

You also use the keyboard to give the computer 1its special
orders or COMMANDS.

For example you might type in the command "RUN" which tells 1t
to start running the program you've just loaded into its
memory.

Or you might type in "LIST" to get it to remember the whole
program and show it back to you, so that you can check it for

mlstakes.

...and how it "talks" to you!

How does the computer show you things?

Generally it shows you things and lets you know what it's doing
by printing messages on its VIDEO SCREEN.

— NOTE

So the keyboard of a computer 1is

rather like its eyes or ears, used

for receiving information and 1ts

video screen is rather like 1its

"mouth" -- which it uses for giving
information.,

In the case of your Wizzard computer, its video screen also
happens to be the screen of your TV set.

One more thing. When you tell the computer to RUN the program
stored in its memory, it doesn't forget it afterwards. So you
don't have to load it in again every time you want to run 1it.

The program stays in the computer's memory until you tell it to
forget it, or load in another program (for doing another job).

Until this happens, your computer will run the program as many
times as you like.

The only other thing that can rub out the program 1s to turn
of f the computer's power switch, or pull out its plug. This
will always give a computer instant amnesila.

In fact pulling out the power plug is the ultimate weapon -- a
sure~-fire way of showing any computer who's boss!

That's all for the moment, But here's another quick quiz.

15

QUICK QUIZ 3

1. What does a processor (or CPU) do? (tick one)
a. Follow the orders in your program
b. Talk to you
c. Make cake mixes
d. Disobey orders

2. What happens when Wizzard executes an instruction? (tick

one)
a. It kills it
b. It runs away with 1t

c. It obeys it
d. It remembers it

3. What 1s BASIC?

4. What does is mean when you load a program? (tick one)
a. You make it heavier

b, You put it into the computer's memory
c. You give it a 1long, cool drink
d. You see how long 1t 1s

5. What are you telling Wizzard to do when you type in the word
"RUN"? (tick one)
a. You're telling 1t to go faster
b, You're telling 1t to go away
c. You're telling it to execute the instructions 1in the
program
d. You're telling it to remember the program

6. What does Wizzard do when you tell it to "LIST"? (pick one)
a. It leans to one side
b. It recites the alphabet
c. It shows you the program you have loaded into its memory
d. It obeys the program's instructions

7. Why did Wizzard enter the sports carnival?

16

CHAPTER 4 —-- Teaching your Wizzard some tricks

By now you should understand a bit about how a computer works,
vYou have also unpacked and connected Wizzard to the power point
and the TV, so it is time to start getting some programs
RUNNING.

Programming is a bit tricky so we will go slowly, one step at a
time, with some explanation 1n between steps.

If everything is switched on, you should see the CREATIVISION
message on your TV screen, |

First, here is a picture of the keyboard:

Getting Wizzard to say HELLO

This simple program will make Wizzard say hello:

Use your keyboard to type these
lines exactly as they are

written here (we will explain
why they have to be typed this
way in a minute).

19 PRINT "HELLO"
20 GOTO 10

At the end of each line hit the
square marked RET'N on the
keyboard.

17

Typing mistakes are easy to fix

If you make a typing mistake, don't worry. It is easy to fix.
You can correct mistakes in 2 ways:

Firstly 1f you notice your mistake before you hit RET'N to end
up the line, you can simply go back to the place of the mistake
by hitting the square marked with a backwards facing arrow
(<-=) and type in the right thing instead.

If you don't notice the mistake until after you have hit RET'N,
you won't be able to move back to correct it using the arrow —-—
but DON'T WORRY. You can type the line in again, (correctly of
course), by usling the same number as the line with the mistake
in 1it.

This is one of the reasons we use line numbers. If two lines
have the same number at the beginning, the computer will ignore
the first line you typed in and only notice the second one.

Why we use line numbers

We explained earlier that a computer only does what you tell it
to and that it is important to tell it everything it needs to
know to run your program,

If someone tells you to put on your shoes and socks like this:

"Put on your shoes -- Oh I forgot, put on your socks first"”

You would know to obey the second part of the command first and
the first part -- putting on your shoes -- afterwards. But a
computer can't work this out, so you have to have some way of
telling it which commands to follow first, which to follow
second and so on,

You can do this by giving a number to each 1nstruction line 1n
the program,

All wizzard then has to do is follow them in order, starting at
the line with the lowest number and gqoing on to the one with
the highest number.

It always does the instructions in the order of their line
numbers, unless one of the instructions tells it to do
something else.

Do you just number the lines 1, 2, 3 and so on? Well you can,
but it's usually not a good idea. It's better to give them
numbers with gaps between them, like 10, 20, 38 etc.

18

Perhaps you have already guessed why:

If you don't leave gaps, there won't be any room for adding 1in
extra instructions later. And, quite often, you do have to add
extra ones in, because if you're like most people, you'll £ind
you have left some out!

Let's say, for example, that you discover you've left out an
instruction between two lines, If they're numbered "7" and "8",
vou're going to be in trouble, but if they're numbered "78 and
"gp", all you have to do is give the extra line a number in

between the two —-—- like "75",

Here are a few facts about instruction lines in a program:.

NOTE

Every instruction line in a program
must have a line number. We suggest

the numbers go up 1n steps of 10 so
you can add other instruction lines
later. Instructions on the Wizzard
must take no more than 25 characters
(including spaces) after the number.
However, you can squash up your
instructions by leaving out the gaps
between words 1f necessary.

Back to your program

Well the Wizzard is still waiting to do something!

So let's give it something to do with the program you've
already typed 1n.

Firstly, try giving it a direct COMMAND.

NOTE

A direct command is like an
instruction in a program, but 1t
doesn't have a line number., This
is because it is not part of a
program. It tells the computer
to do something with the program
and to do it straight away.

Commands can be included in program instruction lines as well
but they don't have to be in a line before the computer obeys

them,

19

NOTE A
One command is LIST -- this tells
Wizzard to show your completed
program on the TV screen,

If you've made no corrections, all Wizzard will do 1is show you
vour program as you typed it in, But 1f you had to retype a

line because you made a mistake the first time, you'll see that
the wrong line has been removed. |

8 NOTE
Another command is RUN, which |
d tells Wizzard to RUN your program |
by obeying the instructions you
have given 1it.

Type in LIST and hit RET'N to
| get a list of your program on
f the TV screen,

Then type RUN and hit RET'N
l to get your instructions
EXECUTED.

1f you typed the program in exactly as it appeared in the book,
you should see lots of HELLOs on the screen,

What did this program really tell Wizzard?

Your first instruction was:
19 PRINT YHELLO"

Can you guess what that means? Right! It is telllng Wizzard to
print the word HELLO on the screen for you to see.

- NOTE
Whenever you want Wizzard
to print a message on the
screen, you simply key 1n
in instruction line which
says PRINT and then gives
the message you want
printed, with quotation
marks (") at each end.

20

These marks (") must always go round the message you want shown
on the screen, or Wizzard won't print it,

The second line you typed was:

20 GOTO 140

You were telling Wizzard to go back to line 18 and start again.

That's why Wizzard printed HELLO not once, but over and over
again., And it will keep printing HELLOs until you stop it.

This is known as a programming LOOP. We will explain more about
loops in the next chapter,

For the moment, there are a couple of ways to stop the HELLOs.

One way is to turn off the power, which will make Wizzard
forget the program altogether. The other way 1s to hold the
CNT'L key down and at the same time press C, This stops the
program running without making “Wizzard forget it.

Use the second way now:
hold down CNT'L and

I press C. What happened?

The screen stopped, with the last few HELLOs still on 1it, and a
READY message to show that Wizzard is walting for further
orders,

Now do this quick quiz and you will be ready to go oh to
chapter 5 and learn some more programming.

21

QUICK QUIZ 4

1. Why do you give each line 1n your program a number? (pick

one)
a. To show how important 1t 1s

b. To be tidy
c., To teach Wizzard how to count
d. To show Wizzard the right order for following your

instructions

2. What 1s the difference between an instruction line and a

command? (pick two)
a. One is said in a firmer tone of voice
b. One is part of a program and the other tells Wizzard

what to do with the program
c. One is more informative
d. A command doesn't have a line number

3. Which is a better way to number instruction lines
l; 2; 3; 4, 5, etC oOr
19, 20, 36, 40, 50 etc

4, Why?

5. What 1s a programming loop? (Plick one)
a. The place where Wizzard hangs 1itself
b. A thing like a magnifying glass, to look at small

programs
c. What happens when your program says GOTO an earlier line

22

CHAPTER 5 -- Becomlng a programmer

As you already know, a PROGRAM is a list of instructions in
numbered lines telling Wizzard what you want it to do.

You also know that it's important to tell Wizzard everything
you want it to do, and in the right order.

Let's look more into how you work out a program, using the
BASIC language for your instructions,

Make Wizzard forget the
' last program by typing §
§ NEW and hitting RET'N

Now the memory is empty and you can start work.

We'll do some adding up first. If we wrote a PRINT instruction
of the sort we looked at 1in chapter 4, like:

1% PRINT "2+2"

it would just print out the part inside the quote marks ("). We
wouldn't get it to work out the answer. But we can get it to
work out the answer by making a simple change...

m NOTE
To make Wizzard work like a
calculator, give it the same
| sort of PRINT instruction, |
but WITHOUT the quote marks. |

Type in these two lines
EXACTLY as they are

here (and hit RET'N at
the end of each line).

13 PRINT 2+2
20 END

LLine number 1@ tells Wizzard to print the answer to the sum 2 +
2. And line 20 means just what it says -- END. This line tells

Wizzard that you have finished the program and 1t can stop
following instructions until you give 1t some more,

23

Now get Wizzard to do this sum, by running the program:

Type in the command

RUN and then press
the RET'N key.

If you typed in the program exactly as shown, Wizzard will have
obediently printed a 4.

Incredible, isn't 1t -- you've just got your Wizzard to tell
you the sum of 2 and 2! Aren't computers fantastic?

Adding another line to your program

Let's add another instruction line to this program. It's easy
because we've left plenty of space between the line numbers.

Instead of just printing the answer to our sum, 4, let's get
Wizzard to print out the sum as well, so it shows the whole
thing: 2 + 2 = 4,

You already know how to do this from the last chapter.

All we need is a line at the start of the program (before line
1) which says: PRINT "2 + 2 =" and Wizzard will print what's
between the quotes BEFORE it prints the 4.

The new line number must be lower than 18 1f Wizzard is to

follow that instruction first. We suggest number 5,

So key in the extra 1line
with this number (ending

it by hitting RET'N).
Then LIST your program.

It should now look 1like this:

5 PRINT "2 + 2 ="
1) PRINT 2+2 |
20 END

Let's run this program and see what happens. The screen should
say this:

24

Not quite right yet, is 1t? It would look better all on one
line. The way to do this 1s by re-typing line 5 like this:

5 PRINT "2 + 2 = ";

Did you spot the added semicolon at the end? It's important...

- NOTE -
A semicolon at the end of the

PRINT instruction tells Wizzard
NOT to shift its printing down

to the next screen line when it
has printed your message,

RUN the program now, and |}
you'll see the semicolon |

has fixed our problem.

The screen should show this:

2 + 2 = 4

Try this quiz before moving on to chapter 6.

QUICK QUIZ 5

1. How would you change our program to give you the answer to
the sum 5 + 37

2. How would you change the program to work out the answer to
the subtraction 7 - 47

3. What does an END instruction do? (Pick one)
a. Tell the Wizzard to shoot 1itself
b, Tell the Wizzard you're shooting yourself
c. Just tell it that your program ends there

4. What does a semicolon do when you add 1t to the end of a
PRINT 1nstruction? (Pick one)
a. Make the Wizzard pause for breath

‘b. Tell it NOT to shift down to the next printing line on
the screen

c. Tell Wizzard you don't gquite know what you're doing

25

CHAPTER 6 —-—- More programming

Drawings of the program

Here 1s a drawing of the program you gave Wizzard at the end of
chapter 5:

This drawing is called a FLOWCHART and it shows everything the
Wizzard does in the right order. A flowchart can be very handy
when you are working out programs,

There is something on the flowchart that you don't have written
in your program, It's the START sign.

Always put this at the beginning of your flowchart. It may not
seem much use with a simple program like this, but when your
programs become more complicated, it comes in very handy to
know where everything starts.

If you look at the chart, you should notice that the START and
END are in oval-shaped boxes and the other 2 instructions are
in rectangular boxes.

| N T L ol ——
It's useful to put rectangles round
simple instructions and ovals round
the START and END signs, because

flowcharts can get complicated when
you wrlite longer programs.

There are lots of different types of instructions, (you'll find
some of them later in this book) and it is important to be able
to tell quickly what type of instructions they are. You can do
this if you have different shaped boxes around them.

We will show you the different boxes you should use for special

instructions later. For the moment, all you have to remember
1s the oval and the rectangle.

Programmers usually draw up flowcharts then write out the
program with line numbers before they type in the instructions.
It 1s good practice to do this too, so from now on, you should
have a pencil and paper to help you with your programming.

26

Got pencil and paper handy? Right! We thought you might like
to tell Wizzard how to do some number tables., Here is a

flowchart of the program you can use:
'STARTfﬁ .;ﬂ_« : ASK FOR — HH; INPUT ;ﬁnh-gg_Hbﬁw_
em— NUMBER . NUMBER ,'

| . ,, NwﬁﬁfNTwmj

_ PROBLEM |
—

| ANOTHER
| NUMBER |

; IWBékméﬁ%mi
wemed ANSWER AND |
l PRINT IT |

The best way to work out the program from the flow chart 1is to
follow the arrows and give each box a line number, then work

out what your instruction line should be so you can get wlzzard
to do what's in the box,.

Let's do this one together.

We don't have to give START a number but the first box should
be number 10. In this box, Wizzard must ask for a number. So
the instruction line could be something like this:

19 PRINT "GIVE ME A NUMBER"

The second box involves getting a number for Wizzard to use i1in
the equation (this is the maths problem you want it to do).

“ L I ——
There is a special instruction
for this: an INPUT statement.

If you use it in the next line, it will look like this:
20 INPUT A

You can use any letter of the alphabet for the input -- not
just A -- but don't put a number in. It must have a letter,

Line 28 is telling Wizzard to let you type in a number -- any

one you like. When you have typed in your number, Wizzard keeps
it in its memory in a place called A.

27

A bit about variables

That last paragraph may seem pretty confusing so we thought you
might like to learn a little about variables before we go on.

Wizzard has a very efficient memory. It learns things {or
stores them) in various parts of its memory and glves each part
an "address",.

This is just like the addresses of different houses 1in a
street. And when Wizzard remembers something for you, it 1is
just like going to a particular place and fetching what it
finds there.

When we tell the Wizzard to INPUT A, we are telling it to do
two things. One is to let us type a number in., The other is to
put the number, whatever it is, away in its memory -- marked A.

When you use letters instead of numbers like this, you are
telling Wizzard to reserve a space in its memory for a number.
You can then change the number (making A = something else) and
Wizzard will do the same calculation for you with a different
number, Because you can change the actual number in A, A 1s
called a VARIABLE,

Meanwhile, back to our program...

The lines you have worked out so far are:

149 PRINT "GIVE ME A NUMBER"
29 INPUT A

The next box in the flowchart is where Wizzard shows you what
it is going to do with the number. This means that you have to
work out what you want Wizzard to do, then write an instruction
line (number 30) telling Wizzard to print it,.

Let us say you want Wizzard to multiply the number by 4. Try
this line:

3¢ PRINT A;" X 4 =";

This tells Wizzard to print the number that it has stored in A
and then print "X 4 =" after it (remember, the semicolon tells
it NOT to move its printing down to the next line). If the

number you enter is 8, Wizzard will show 8 X 4 =, when it
executes the instruction.

Did you notice that there were 2 semicolons in line 307

28

Good. The first one lets you use one PRINT instruction for 2
different types of printing,

Line 30 tells Wizzard to find the number in A, then print 1it,
then add the bit in quotes straight after 1it, so both parts of
the printing appear on the same line,

Clever - huh?

The next step 1s to get Wizzard to do the actual calculation

and print the result.

Arithmetic functions

Wizzard can add, subtract, multiply and divide, just like a
calculator.

But if you look at the special keyboard, you will £find no
division sign there. And if you just use an X for multiply,

how is Wizzard going to know when you mean 1t to be a
multiplication sign, and when you mean 1t to be the letter X7

Yes, we know people could work it out, but Wizzard isn't people
and it is too dumb. So, to make it absolutely clear for the
poor, stupid computer, we have a serles of speclal symbols for
the different arithmetic functions.

. . NOTE' Lo e r e R
We use an asterisk (*) for multiplying,
a dash (-) for subtracting (just like
the normal minus sign), a plus (+) for
adding and a diagonal or "slash" (/)

for dividing.

To tell Wizzard to work out 2 X 4, you would type in 2*4, 1If
vou wanted it to work out 6 divided by 3 -- can you guess how
to write 1t?

If you had 6/3 you were right. Now let's get back to this

program.

The next step (line 4¢) must tell Wizzard to do 2 things. It
must multiply the number in A by 4, and it must print the
answer, Can you work out how the line should go?

29

It goes like this:
49 PRINT A¥*4

The next box gets Wizzard to ask for another number. I know you
can already do this, so write line 5# as a PRINT instruction.

Looping around

When Wizzard has asked for another number you want it to go
back to step 20 (where you can type 1n another number to go
into A).

This is called a LOOP, and the easiest way to make such a loop
in your program is with a GOTO instruction.

' NOTE
When yvou find a loop in your
flowchart, an easy way to do
this is with a GOTO instruction

The instruction line will be easy. Just put this:

60 GOTO 20

The finished program

Your program should now look like this:

19 PRINT "GIVE ME A NUMBER"

20 INPUT A

3¢ PRINT A;" X 4 =";

43 PRINT A*4

50 PRINT "GIVE ME ANOTHER NUMBER"
63 GOTO 20

Type this program 1in
and LIST 1t so you can
check it and correct

any typing mlstakes.

Now don't be shy -- try running it! (Type in RUN and hit RET'N)

Wizzard has asked you for a number, you'd better type one in.

39

Why not make it 1. Type in 1 and hit RET'N.

Wizzard should have told you what 1 X 4 is and asked you for
another number,

Type in 2 this time, and again hit RET'N, Now 1t has told you 2
X 4, and asked you for another number -~- why not try 37

By typing in a different number each time, you will be able to
get Wizzard to go right through the 4 times table for you,

What's that I hear? You would like it to do another table?

OK, you can do this, but you'll have to change two lines 1in
your program: line 3¢ and line 4. Let's get it to do the 9
times table,

First, you'll have to stop the present program from running:

Hold down CNT'L and press C,
to stop the program but keep |
it in Wizzard's memory.

Now type in a new line 30:
3@ PRINT A;" X 9 =";
... and a new line 40:
4 PRINT A*9

Now type in LIST and press RET'N, and you will see your new
program on the screen,

Run it, and you will find that your Wizzard can now multiply
any number you give it by 9,

There is no quiz in this section. We think you've had quite
enough hard work for now!

Just glance through the list on the next page, which shows all
the things we've looked at so far. Then have a rest before
going on to the next chapter -- you've earned 1t!

31

WHAT WE HAVE LEARNED 50 FAR

Here's a summary of the things we have covered so far.

LIST tells Wizzard to show you the program as you have written
itl '

RUN tells Wizzard to execute the program - by obeying the
instructions in it,

PRINT tells Wizzard to print something on the screen, If you
put quotes around the thing you want printed, Wizzard will
print what'®s inside the quotes. To get it to work like a
calculator and print the result of a calculation, don't use
quotes. |

INPUT is an instruction that gets Wizzard to stop and let you
enter a number of your own choice,

VARIABLES are names for places where Wizzard can store
different numbers. An example of a variable 1s the letter you
use to tell Wizzard where to store a number you will INPUT.

GOTO is an instruction to get the Wizzard to jump to another
part of the program. If you say GOTO 20, Wizzard will go to do
the instruction on line 20. If the GOTO 20 instruction 1s on a
later line, this makes what is called a LOOP in the program.

If you hold down CNT'L and hit C, you will stop a program
running without making Wizzard forget it.

FLOWCHARTS are drawings of all the things you want Wizzard to
do in a program. A flowchart has START and FINISH 1in ovals and
all other instructions (that you know so far) 1in rectangles.

END tells Wizzard that there are no more instructions in the
progam,

A SEMICOLON in a PRINT instruction line tells Wizzard not to go
to another printing line. It lets you use one PRINT instruction
for printing two things, one straight after the other.

Wizzard can carry out calculations for you using these signs: +
for addition, - for subtraction, / for division and * for
multiplication. It will carry out other calculations as well,
but those are mentioned later in this book,

32

CHAPTER 7 - More on tables

There is a way to get Wizzard to work out number tables

automatically for you, without you even having to 1lnput any
numbers. |

> Remember we talked about variables <
> being addresses that Wizzard uses <
> to keep numbers 1in? <

We also saild that you could change these numbers and that was
why they were called variables. |

Well - when you wrote the program in chapter 6, you changed the
variable yourself each time you reached line 20 and had to
input a new number, This time we will show you how to program

Wizzard to change the variable for you, so that 1t will work
out the full table all by 1itself.

Let's do the 4 times table again.
The first line of the program will look like this:
14 A=1

This is the way you tell Wizzard
IN THE PROGRAM what is going to

be the value of a variable like
A, instead of having to enter

the value using an INPUT line.
The next step 1is to get Wizzard show you what it 1s doing with
A. You can do this in the next line.

This can be just like line 3¢ in the first program. It should
look 1like this:

20 PRINT A:" X 4 =";

Because you have told Wizzard that A = 1, it will print 1 X 4 =
when it executes this instruction.

The next line 1s simple:

390 PRINT A*4

Now we get a little more complicated...

33

We've now got to make Wizzard work out the next number for A,
which will be 2., The next time round 1t should make it 3, then

4 and so on. To do this we give it an instruction like this:
43 A=A+1

This looks strange, and would be wrong if you tried to put 1t
in an ordinary arithmetic problem. But remember here A doesn't
just stand for a number - it really stands for the address of
the number in Wizzard's memory. T

- | NOTE - - — T Lo
A=A+] tells Wizzard that the next number
for A must be one bigger than the last

one. So if the last number in A was 1,
the next one will be 2, and so on.

Now we need a loop in the program so that Wizzard will go back
to multiply the next A by 4. It looks like this:

58 GOTO 20
So your program will look like this when it is written:
19 A=l
20 PRINT A;" X 4 =";
3@ PRINT A*4

49 A=A+l
50 GOTO 24

Here .is the flowchart £for this programn,

START Yomemt PRINT
- | A;"X4="

WORK OUT ANSWER
AND PRINT IT

| MAKE
| A#A+l

Why not test this program out?

Type in NEW and press RET'N to get Wizzard to forget the last
program. Then type the new one in, just as 1t appears above.

Ready to run 1t? First check it by typing in LIST and pressing
RET'N. Then if it's allright, type in RUN and press RET'N,

34

Isn't it cute the way Wizzard just keeps on and on multiplying
numbers by 4? It will go on for ever unless you stop 1t --
doesn't that give you a feeling of power!

The flowchart shows this —-—- at present,the program has no END.

But we can get it to stop the multiplications automatically at
a given point (say after A=12), by adding a new instruction.

How to stop a loop going on for ever

Let's say you just want Wizzard to do the table up to 12 X 4
and then stop.

At the moment, the only way you can stop it is by holding down
CNT'L. and pressing C.

Do this now, to stop the
program so that you can

concentrate on what we
are going to tell you.

Ready? Right. What we have to do is tell Wizzard to stop when
the size of variable A has passed the value 12. To do this we
use a new instruction: the IF ... THEN instruction,

It will look like this:

45 IF A=13 THEN END

The IF ... THEN instructlon gets the
Wizzard to make a decision. It has
to look at something (here the value
of A) and decide IF 1t has reached a
certaln size (here 13). IF 1t has,
THEN Wizzard follows the instruction
on the rest of the line. But IF it
hasn't reached the size yet, then
Wizzard ignores the rest of the line
and "drops through®" to the next line.

We have made the IF ... THEN line 45 so that Wizzard will 1look
at it before looping back to line 28.

Why not try this modification to the program by typing in the
extra line now.

35

Type it in, then LIST the
program to make sure 1t 1is
there. If all is well,

try running your improved
program to see what happens.

You should have seen Wizzard do the "4 times" table up to 12 X
4, then stop by itself just as we wanted. (If it didn't, you
must have made a mistakel)

That was the effect of our new IF ... THEN instruction. While A
was less than 13, it let Wizzard keep on looping back., But as

soon as line 4¢ cranked the value of A up to 13, the second
part of line 45 suddenly sprang into action and forced Wizzard

to stop.

IF ... THEN is quite a powerful instruction. Because 1t lets us
tell Wizzard how to make decisions, and do different things
depending upon what it decides, it opens up all sorts of new
possibilities. We'll see more of these shortly.

Here's a quick quiz to do before we go on to write our own
guessing games 1in chapter 8.

QUICK QUIZ 6

1. How can A = A + 1? {(pick one)
a. Because A 1s stretchy
b. Because programming is silly
C. Because you are really telling

Wizzard to change the number in
A to the next number up.

2. Write a program to get Wizzard
to do its 13 times table, going f##_,f/

A |
- 4
up to 13 X 15 and then stopping. ﬁ-
Pping. ‘.l==i‘ 2
{\
\

3. What is an IF ... THEN instruction?

-

36

CHAPTER 8 — Guessing games

Here's a flowchart for getting people to guess a mystery

number :
| PUT IN MYSTERY jmmedpmmemed ASK FOR GUESS

"START)~
— — | INPUT GUESS |
CTTETINT NPUT GUESS
MESSAGE |

vES Y

NOTE o -
There is a new shape in this | MR | |
flow chart, It is called a : | PRINT :
DECISION DIAMOND, and shows f i YOU GOT IT!
where the computer must make | | | MESSAGE

a choice, One way of getting
it to do this is by using an .
IF ... THEN statement. ; [END

In this case, if the number guessed is right, Wizzard will say
YOU GOT IT! and stop. If it is wrong, Wizzard tells you to TRY
AGAIN and goes back to let you guess again.

Let's write a program from this flowchart., If the mystery
number is 7, it will go something like this:

19 A=7 |

29 PRINT "FIND MY NUMBER!"™
30 INPUT B

49 IF B=A THEN GOTO 74

5 PRINT "NO - TRY AGAIN!"
68 GOTO 30 |

70 PRINT "YOU GOT IT!™

80 END

Notice we had 2 variables in this program. One was A - for the
mystery number, the other was B - for the number you guess,

There is just one problem we have to solve before you can go
and get someone to play this game. When you've typed 1t 1in, and
probably LISTed it for checking, the program will still be
showing on the TV screen (complete with the mystery numberl).

37

So it is time to introduce another new instruction, one which
tells Wizzard to "wipe its screen clean". This will hide the

program from the guesser,

® NOTE
The instruction CLS (short for
CLear the Screen) 1is used to
tell Wizzard to rub everything

from its video screen.

You can use CLS as either a direct command, by typing it 1in
without a line number, or as a program line. For the moment,
let's make it into an extra line at the start of our program.

It will look like this:

5 CLS

OK, key in the complete
program now, and don't
forget line 5. Then

LIST 1t and RUN 1t...

How did the game go? It's a bit hard for your guesser to find
the number isn't it, because there are lots of numbers to

choose from.

Maybe we can get Wizzard to be a bit more helpful. A good
addition to our program would be to get Wizzard to tell the
guesser 1if the number they've picked is too big or too small.

Greater than and less than

We do this by using another IF ... THEN statement, wilth a
greater than (>) sign.

Let's replace line 5@ and add a few more:

58 IF B>A THEN GOTO 56
52 PRINT "TOO LOW!™

54 GOTO 30
56 PRINT "TOO HIGH!"

(Now that our programs are getting a bit longer, you can see
how useful it is to leave spaces for adding new llnes.)

38

OK, press CNT'L and C to stop
the program (unless your

guesser got the number), then
type 1n the extra lines. Now
LIST the program to check it.

Your program should now look like this:

20 PRINT "FIND MY NUMBER!"
38 INPUT B

4 1IF B=A THEN GOTO 74

50 IF B>A THEN GOTO 56

52 PRINT "TOC LOW!"

54 GOTO 30

56 PRINT "TOO HIGH!"

6d GOTO 30

78 PRINT "YOU GOT IT!

8@ END

Can you see what we've done? 1If B, the number guessed, is
equal to A, then line 4@ will send Wizzard down to line 7@ as
before. But if the two aren't equal, it will drop down to line
50 instead. o

Line 50 then looks to see if B 1s larger than A or not, If 1t
is, then Wizzard will be sent down to line 56. So 1t willl print
out the TOO HIGH! message, and then loop back (line 68) to let

you try again,

What happens in line 5¢ if B is not greater than A? Well, it
can't be equal to A, or Wizzard wouldn't have got to line 58 in
the first place. And if B i1s not greater than A, there's only
one possibility left -- it must be smaller than Al

So that's why our line 52 tells Wizzard to print out the TOO
LOW! message, and then loop back (line 54) as before to let you

try agailn.
I RUN the modified program
now, to see how 1t works

It's a lot more helpful now, isn't 1t?

39

By the way, instead of using the greater-than sign in our
second IF ... THEN instruction (line 58), we could have used a
less—than sign (). But we would have had to swap the
instructions in lines 52 and 56, to match the opposite way line
58 would have worked. |

You might like to try this
for yourself., Change the
three lines and then RUN

the program again to prove
that it still works,

The IF ... THEN instruction is pretty flexible, isn't 1t? By
using signs like equals (=), greater—than (>) and less-than
(<), we can make it check for all sorts of things.

Here's another quick qulz before we go on.

QUICK QUIZ 7

1. What does Wizzard do when you type CLS? (pick one)
a, Give you a clue?
b. Clear everything off the TV screen?
c. Put you at the top of the class?

2. What does B>A mean?
3. What does B<A mean?

4. What do you put on a flow chart to show an IF ... THEN?
@CD@@@@O@@@@@@@@

@@ESS M%ﬂ g

40

CHAPTER 9 - Making Wizzard do more of the work

That last guessing game may have been quite fun for someone
else to play, but you couldn't play it yourself, could you?
Because you already knew the number.

Now we're going to show you a way to make Wizzard "think of its
own number", so that you can play the game too.

The program you use will be exactly the same as the one you
used in the last chapter, except for line 1. Instead of
saying A = 7 (or any other number you choose), we are going to
use line 19 to get Wizzard to pick a number you don't know
yourself, '

Random numbers

We can get Wizzard to pick a number "at random" (in other
words, pick any number it likes) by using another new
instruction: the RND instruction, It looks like this:

14 A=RND (104)

This gets Wizzard to pick any number between 1 and 108, and
store it away as A. If you wanted a wider choice (such as
between one and 500), the line will have a bigger number in the
brackets, such as:

18 A=RND (508)

OK, type 1n your program

with this new line, then
LIST it and RUN it again

See what happens =-- each time you run the program, Wizzard will
pick a new number for you to try guessing. So now you'll be
able to play the game just like anybody else!

Doiqg things a.figed number of times

Remember in chapter 7 where we wrote a little program to get
Wizzard to work out a number table and stop at the end? We

used an IF...THEN instruction to work out when to stop looping,
when our variable A had become larger than 12,

Well that certainly worked, but now we'd like to show you a
rather neater way of looping around a fixed number of times.

41

‘This is by using a pair of new instructions, FOR and NEXT.

S NOTE .
The FOR instruction goes at the start
of your program loop, and the NEXT
instruction goes at the end.

The FOR instruction tells Wizzard that you want it to make the
following instructions part of a loop, and that a particular
variable is to be stepped up or down in size each time it goes
around the loop, until 1t reaches a certain value,

The NEXT instruction tells Wizzard where the FOR instruction's
loop ends,

NOTE
For every FOR instruction in your
program, there must be a matching
NEXT instruction after it...

Here's how the FOR and NEXT instructions would be used to
neaten up our number table program:

13 FOR A=1 TO 12 |
28 PRINT A;:" X 4 = ";
30 PRINT A*4

49 NEXT A

58 END

The FOR instruction in line 10 tells Wizzard that we want to
have 1t make a loop using the instructions that follow, and

that we want 1t to loop around 12 times with variable A=1 the
first time, A=2 the second, and so on up to A=1l2.

The NEXT A instruction in line 4 tells Wizzard that the FOR
loop ends at that line. Wizzard won't get to line 58 until it
has looped back to line 18 the required number of times,.

Try running this version of
the program for yourself,
to see how 1t works...

You can have any letter from A to Z for the "how many times
around the loop" variable used in a FOR instruction. We only
used A here because 1t was used before. Whatever letter you
use, it's known as the loop counter variable,

42

The FOR instruction is even more flexible than you might think
from this example, because if you want, it will let you step
the loop counter variable down instead of up each time 1t goes
around the loop. Not only that, but it will let you step the
counter variable up or down not just by 1, but by a larger
number if you wish,

You get it to do these things quite simply, by adding another
part to the instruction -- a part showing the STEP size.

For example, say you wanted our number table program to go
backwards, from 12 down, and you wanted 1t to work out the
answer only for the even values of A. You could do this by
changing line 1¢ to read:

19 FOR A=12 TO 2 STEP -2

This tells Wizzard that you still want to make it do the
following instructions as a loop, with A as the counter
variable, but that this time you want 1t to decrease A by 2
each time it goes around, starting with A=12 “and looping until
A=2,

Why not try changling 1line

19 to this, and RUN it
again to see the difference

The FOR and NEXT instruction pair are pretty flexible, aren't
they? They give you a neat way of getting Wizzard to do loops
a fixed number of times, even with the basic version of the FOR
instruction. If you add the STEP part, which is optional, they
let you do even fancier tricks.

Before we leave FOR and NEXT, you've probably been wondering
when you should use these instructions for a loop, and when you
should use an IF ... THEN instruction with a GOTO. That right?

NOTE
As a general gulde, FOR and NEXT are best i1f
you know in advance exactly how many times
Wizzard will have loop around. But IF...THEN
with a GOTO is better where you want it to

loop until something reaches a certain size,

But there's no rigid rule on using these instructions, so you
can try both ways for a particular program, and see which you
prefer, It's largely a matter of individual preference,

43

Adding REMarks to your programs

As your programs get more and more complicated, it is a good
idea to put headings and comments in them., Not for Wigzzard's
sake, but so that YOU can come back later and still see what

the program 1is supposed to do.

"This 1s easy to do. Just write a line with REM in the front,
straight after the line number, and Wizzard will know it is a
line for you to read, not an instruction.

Wizzard will automatically ignore
any line which has REM straight
after the line number. It simply

skips that line and jumps to the
next one.

For example in our number guessing program, you might want to
put in a line like this:

35 REM PRESS RET'N AFTER INPUT
This line reminds you that after typing in your guess number,

you must press RET'N or Wizzard won't know that you have
finished,

WHAT YOU HAVE LEARNT IN CHAPTERS 7, 8 AND 9

This 1s the new information you have learnt so far. Just run
through them to see if you can remember what each instruction
means, before you go on. (There's no Quick Quiz this time)

Here are the things we've covered:

IF ... THEN and declision diamonds

CLS. to clear the TV screen

> (greater-than)

< (less-~than)

RND to generate random numbers

FOR with STEP (optional)

NEXT |

REM for adding remarks to your programs

44

CHAPTER 1@ -- Saving programs on cassette

There has to be an easier way than typing 1n a program every
time you want Wizzard to run it. And there 1is.

The easier way 1s to save your programs on cassette tape. Then
all you have to do each time to want to run one is load 1t back

into Wizzard, straight from the tape. This only takes a minute
or two —-— much faster than typing it in again,

To do this you will need the optional Cassette Deck/Interface
for your Wizzard (Cat. No. Y-16087), and of course a cassette
tape. You don't need special tapes -- an cordinary audilo
cassette tape will do, although we do recommend that you use a
"low noise" tape of reasonable quality. |

Although normal C-60 or C~99 size cassettes are 0K, you'll find
it easier to get short tapes (eg C-10 or C-15) and record one
program on each side. This willl save you the hassle of having
to search through a long tape, in order to find a particular
program you want,

Dick Smith stores sell C-10 cassettes that are "computer
verified"™ to be free from faults (Cat. No. X-35@02). You can
also get ordinary C-18 and C-15 cassettes elsewhere (of course,
they won't be as nice, but that't your business).

The Cassette Deck/Interface attaches to your Wizzard on the
left-hand end, looking from the front. You c¢lip off the
Wizzard's end plate, and then connect the little 6-hole plug on
the end of the Cassette unit's cable to the 6-pin socket 1inside
the Wizzard. You can see the socket in this picture:

.-.-.-:;.r.r||lII--J.:--III;-.I-.I-.I-IIIT-I.:'-:'111--""'-""'-"-""'II".:..:..- ..

- ——] — & b — e my T Sl Tt ittt

45

Here's how you connect the two together:

Switch Wizzard off and turn it over,.
Locate the small plastic splgot on

the bottom, near the left hand end,
and turn it around until its screw-

driver slot is at right angles to
the end. Then you can pull 1t out.

Remove the left-hand end plate by
pushing it towards the back about
l19mm. Then pull 1t away to the left,
Plug the cable from the Cassette
adapter into the Wizzard's 6-pin
socket.

Sit the Cassette adapter alongside
the Wizzard and clip it on instead
of the original end plate. Then
re-fit the plastic locking spigot.

Now your cassette adapter 1s set up ready to SAVE programs from
Wizzard onto tape, and LOAD them back into Wizzard. But before
you try to do either, there are a few general things you should
know about Wizzard and cassettes:

NOTE
Before you try to LOAD or SAVE
a program, make sure you rewind
the cassette back to the start.

Some cassettes come with a plastic "leader"™ on the start of the
tape. This is usually transparent, and a different colour from
the usual dark brown of the tape 1tself. Unlike the tape, this
leader won't take any recording, so you have to make sure that
Wizzard doesn't try to record on it.

The best way to do this 1s to remove the rewound cassette from
the deck and use a pencil 1in the "take up" spindle hole to wind
it forward until the tape 1is showing in the front windows.

To SAVE programs on tape
Once you've got a rewound cassette in the deck, with the tape

ready to take a recording, it's really very easy to SAVE a
program that you've got in Wizzard's memory.

46

LIST your program to make
sure 1t 1s what you want,
2, Press both the REC and PLAY
keys down together.

Type in CSAVE and hit RET'N.

When the program is all saved, the cassette wilill stop turning
and Wizzard will show you the > sign and blink 1its little
cursor square again.

It's a good idea to remove the cassette and label the side
facing up in the machine, to remind you which program you have
saved there., Then put the cassette back 1n 1ts cover to protect
the tape and its magnetic recording.

To LOAD a program back into Wizzard from tape

T Al —

The process is equally simple when you want to LOAD the program
back into Wizzard's memory So you can use it agailn:

Put the cassette 1n the deck
with the side you want
facing up.

2. Close the 1id and rewind to

the start of the tape.

Type in CLOAD and hit RET'N.
Press the deck's PLAY button.

When the program has been loaded

into Wizzard's memory, the tape
will stop. You can check that 1t

has been properly loaded in, by
getting Wizzard to LIST 1t

for you.

Using the Cassette Deck/Interface
can save you a tremendous amount
of time and effort in loading

and saving your Wlzzard programs.
It really lets you get the most
out of your Wizzard as a

serious personal computer., |

477

CHAPTER 11 ~- Subroutines

As your programs get longer and more complicated, you'll quite
often find that you want Wizzard to do the same sort of thing
at different points in the program. 5S¢0 repetition starts to
creep in: the same instruction line, or a group of lines, crops
up a number of times in the program.

This is pretty wasteful, isn't it? You'd think there would be
some way that you could put in the line or lines just once, and
have Wizzard use it or them whenever 1t needed to.

Well, there is a way. It's called making the part of the
program that you need to use over and over into a subroutine.

- NOTE
A subroutine 1is a part of vyour
main program which is separate
from the rest, and "called" or
jumped to from various places
in the main program whenever
it 1s needed.

Let's look at an example. Here 1s a Jittle program which can be
used to keep track of how much money you've got in your cheque
account:

18 CLS
20 PRINT "YOUR BALANCE";
3¢ INPUT B

A9 PRINT “"CHEQUE (1)"

56 PRINT "OR DEPOSIT (2)";
6¢ INPUT C

7¢ IF C=1 THEN 100

8¢ IF C=2 THEN 200

90 GOTO 40

16¢ PRINT "HOW MUCH";

11¢ INPUT A

120 B=B-A

130 GOTO 300

20@ PRINT "HOW MUCH";

21¢ INPUT A

220 B=B+A

3¢9 PRINT "BALANCE NOW ";B
319 GOTO 40

*

Now 1f you look at lines 100 and 208, you'll see they are
exactly the same, So are lines 114 and 214.

48

To remove this wasteful duplication, we can take out these
lines and have just one pair of them, separate from the main
program. We do this by giving them line numbers much larger
than those in the main program -- like 90@¢ and 910, for
example:

9@ PRINT "HOW MUCH";
913 INPUT A

Now how do we get Wizzard to jump to these lines from the mailn
program, when it should? And even more importantly, how do we
get it to jump back to the right place in the program, when it
has carried out these instructions?

As you've probably guessed by now, we use two new instructions:
GOSUB and RETURN.

GOSUB tells Wizzard to jump
to a subroutine from the main
program. RETURN tells it to
jump back to the main program
at the end of the subroutine.

So in place of our old lines 10@¢ and 119, all we need now is
the line:

108 GOSUB 9040
And in place of our old lines 200 and 218 we need:

200 GOSUB 9420

And to make sure that Wizzard will go back to the main program
properly each time it goes to the subroutine, we need this line

at the end of the subroutine itself:

920 RETURN

Why not type 1n this program
now, with these changes.

Then RUN 1it, to prove to
vourself that it works.,

It works, doesn't it? But most likely at this stage you're
still not quite sure how 1t works.,

49

Perhaps you're wondering why we couldn't use an ordinary GOTO
instruction to get to the subroutine, instead of the GOSUB.

The answer 1is that GOSUB is really a specilal sort of GOTO,
which not only gets Wizzard to jump to a different place, but
also gets it to remember where it's jumping from. So when 1t
gets to the RETURN instruction at the end of the subroutine, it
will know where to return to in the main program.

If we jumped to the subroutine with an ordinary GOTO, it
wouldn'!t be able to RETURN, because it wouldn't have told 1t to
remember where it came from. Get the idea?

The important thing to realise is that a subroutine is a part
of your program that Wizzard jumps to any number of times, from
different parts of the main program. But each time it finishes
doing the subroutine, it RETURNs to the right place in the maln

program,

What 1is the right place? Why, the line after the one with the
GOSUB that sent it to the subroutine.

Here's a simple little program which should make this clear:

5 CLS

18 PRINT “"LINE 1"
20 B=2

39 GOSUB 1@¢9

4¢ PRINT "LINE 3"
5@ B=4

60 GOSUBR 1040

7@ PRINT "LINE 5"
8¢ END

10¢ PRINT "LINE ";B
119 RETURN

Try typing in this program

and RUN 1it.

See what happened? Wizzard printed out 5 lines, with the
first, third and fifth lines done by the main program, and the
second and fourth lines by the subroutine (lines 108 and 110).
Using GOSUB and RETURN, you can use subroutines to make your
programs really neat and tidy.

Now do this quick quiz before you go to the next chapter,

50

QUICK QUIZ 8

1. What 1s a subroutine? (Pick one)

(a) A program to control a submarine.
(b) A part of your program that is used a number

of times, at different points in the main program,
(c) Part of your program that isn't quite as good
as the rest.

2. When 1s 1t a good 1dea to use a subroutine? (Pick one)
(a) When you want to control a submarine.

(b) When you're not very good at programming,
(c) When you find the same 1instructilion line (or lines)

cropping up at different places in your program.
3. Why can't you jump to a subroutine using a GOTO instruction?

4., How many times can you jump to a subroutine from your
maln program?

5. Which instruction must be used to end a subroutine?
(Pick one)
(a) END
(b) STOP
(c) RETURN
(d) GO BACK

Whenever something has to be done
over and over again...

51

CHAPTER 12 —-- Storing data 1in your programs

Sometimes you'll want to store some data in a program, so that
Wizzard will be able to use it while the program is running =--
without asking you to type it in from the keyboard.

This is done using another new pailr of instructions: DATA and
READ.

- g ' NOTE

The DATA instruction gives you
a place to store data (numbers,
words and so on) in a program,
The READ instruction tells
Wizzard to get the data from
your DATA line or lines.

Let's look at an example which shows how DATA and READ are
used. Say we want a program which stores a list of numbers, and
checks any number you type in to see 1if it is one of those it
has on the list. The numbers on the list might be customers who
haven't paid their bill, for example, or they might be the
numbers of stolen credit cards. Here is a simple program which
will do this:

18 CLS5
20 DATA 132,547,798,405,634

3% PRINT "CUSTOMER NUMBER";
4% INPUT N

583 C=1

od READ D

730 IF D=N THEN GOTO 200

8@ C=C+1

9¢ IF C<6 THEN GOTO o0

108 PRINT "OK - NOT LISTED"
113 END

209 PRINT "BAD - ON LIST!"
21 END

The list of numbers is stored in line 28, as you can see, The
word DATA at the beginning of the line tells Wizzard that the
rest of the line contains data, which will be used later on.
The commas between the numbers are simply to separate them, SO
that Wizzard can tell them apart.

In this case there are only five numbers, so they all fit in a

single DATA line. If we had more, they would probably have to
be put into a second DATA llne,

52

Did you notice that the DATA line comes right near the start of

the program, well before the READ instruction in line 68? This
1s important!

NOTE ——
The DATA line or lines must be
before the READ line in your
program, or Wizzard won't be
able to read the data properly.

Can you see how the program works? Line 3¢ asks you to type in
the number you want checked, while line 4¢ brings in the number
you type and calls it N,

Line 50 now tells Wizzard to think of a variable C, and give it
a value of 1. We'll explain the reason for this in a moment,

Line 60 is our READ instruction, which tells Wizzard to read a

data number and call it D. The first time it does line 68, it
will read the first number in line 20.

Line 70 now gets Wizzard to check and see if N and D are the
same, If they are, then it jumps down to line 208 to print out

the "BAD - ON LIST!" message. But if they're not the same, 1t
goes to line 84.

LLine 80 tells Wizzard to increase C by one, so since 1t started
as 1 (from line 5¢), it will now be 2, Then line 94 asks it to
check C, to see if it is still less than 6. If it 1s, Wizzard
is sent back to line 60 to read another number from the list,.

Line 6¢ then gets Wizzard to read another number from line 28,
which line 7¢ will again compare with N, If they're the same
this time, it will jump down to line 20¢. But if they're still
not the same, lines 8¢ and 99 will send it back to try a thilrd
number on the list. And so on...

NOTE
What we're doing in lines 68, 74,
89 and 9@ is getting Wizzard to
keep reading the numbers in the
list, until it either finds one
that is egual to N, or reaches
the end of the list.

How does it know when it has reached the end of the list?
That's the reason for lines 58, 8¢ and 99. We're uslng the
variable C to count the number of times we go around our loop.

53

If we try to go around more than 5 times, line 80 will make C
equal to 6, so that line 90 will stop the looping back. Wizzard
will drop down to line 108, and print out the "OK - NOT LISTED"
message.

Note that the number we compare C with, in line 94, is 6
because this is one bigger than the number of numbers 1in our
list. If we have more numbers in the list, line 9§ would have
to be changed.

OK, why not type 1n this program
and RUN it a few times, to see
how it works. Try typing 1in a

humber that you khow 1s on the

list, the first time you RUN it,
then try typing in a number that
vou know isn't on the list.

Not bad, is it? Wizzard seems to take no time at all to check
the number you type in against those on the list, and gives you
the verdict as soon as vyou've finished typing in.

The only problem at the moment 1s that you have to RUN the
program again, each time you want 1t to check another number.
This is a bit clumsy.

There has to be a neater way, and there 1is. But we have to add

a third new instruction, to tell Wizzard that we want it to go
back and start READing from the start of the DATA line agailn.

The instruction to do this 1s RESTORE.

_— NOTE S—
RESTORE tells Wizzard to go
pback to the start of vyour
DATA line(s), before 1t does
a READ instruction.

The place to add the new instruction is between our existing
lines 20 and 38, so we can make 1t line 25:

25 RESTORE

Once we've done this, it's easy to make the program loop around
again to let us type in another number for checking, without
having to RUN iagaln.

54

All we have to do 1s change lines 110 and 216, so that instead
of ENDing, they loop Wizzard back to line 25:

114 GOTO 25
216 GOTO. 25

OK, type in these three lines

and RUN the program again.

Quite a bit neater now, isn't it? The program will keep
running as long as you like now, checking any number you feed
in against the 5 numbers in 1its list. In fact the only way to
stop it 1s to press CNT'L and C, or hit the RESET button!

Hopefully you can see from this that DATA, READ and RESTORE are

qulite powerful instructions. They give Wizzard the ability to
store quite a lot of data in its programs, and do all sorts of

comparisons and checks with it,

There's no quick quiz for this chapter, because you've had to
do qulte a bit of thinking already. But you're going to enjoy
the next chapter -- we show you how Wizzard can play music!

\

Need to file some information?
I'm not just a pretty face, y'know

55

CHAPTER 13 -- Getting Wizzard to play a tune

One of the really good things about Wizzard is that unlike most
other computers, you can dget 1t to play music through your TV
set, It has a powerful built-in music generator, which is easy
to work from your BASIC programs,

All you need to do to become a virtuoso of the Wizzard keyboard
is learn one new instruction. It looks like this:

SOUND A:X, B:Y, C:Z

The word SOUND is logical enough, isn't it? But you're no
doubt wondering about those letters after it.

Notice that the letters are in three groups, separated by
commas. This 1s because Wizzard's music generator has three
channels. In other words, it can make three different notes at

the same time, if you wish.

So you aren't limited to playlng just simple one-note-at-a—-time
melodies. You can play music with chords as well!

The first letter in each of the three groups above (A, B and C)
stands for the musical note that you want Wizzard to play in
each of the three channels. In each of these positions you can
put a code number, standing for the note you want.

How do you work out the code numbers for the notes? Easy. Just
find them using this table:

= WIZZARD'S MUSICAL NOTE TABLE =

1 = Rest (silence) 17 = D# (ED)
2 = C (below middle C) 18 = E
3 = C# (Db) 19 = F
4 = D 20 = F# (GDb)
5 = D# (Eb) 21 = G
6 = E | 22 = G# (Ab)
7 = F 23 = A (4443)
8 = F4 (Gb) 24 = A} (Bb)
9 = G 25 =B
16 = G# (Ab) 26 = C (high C)
11 = A 27 = C# (Db)
12 = Af (Bb) 28 = D
13 = B | 29 = D (EDb)
14 = C (middle C) 30 = E
15 = C# (Db) 31 = F |
= = Rest (silence)

D 32

As you can see from this, Wizzard can play any note in a full
2-1/2 octave range: from C below middle C (tenor C) up to the F
above top C. This is 30 notes, enough to play a tremendous
amount of music,

There are also two code numbers (1 and 32) which you can use to
make any of the channels in Wizzard's music generator stay
silent for a while. This lets you put "rests" in your music.

The second letter in each of the three groups (X, Y and Z)
stands for numbers which you use to tell Wizzard how long the
notes are to last., In other words, whether it should play a
full note, a half note, a quarter note and so on.

Just as with the notes, here is a table to show you the code
numbers for the different note lengths that Wizzard can play:

NOTE LENGTH TABLE
a sixteenth note or rest

an eighth note or rest

a dotted 1/8 note or rest
quarter note or rest
dotted 1/4 note or rest
half note or rest
dotted 1/2 note or rest
whole note or rest

STREEVI RS I OV 6
| 0 20 Yo S M

As you can see, you have eight different note lengths, ranging
from a sixteenth note to a whole note. This is a very wide

range, more than enough for most music. And these can be used
for rests (periods of silence) as well as for the actual notes

themselves.

OK, let's see if we can play a few notes,

.
- T
~ o
-__.-'

Type in SOUND 14;7,1;7,1;7

and then press RET'N

You should have heard a single note. If you didn't, it's
probably because you hadn't turned up the sound volume on your

TV set. So do this, and try again.

The note you heard was middle C (note code 14), played for a
whole note (length code 7) through Wizzard's first sound
channel. The other two channels were silent because we sent

them code 1, with the same length code 7.

57

To play a 3-note chord, you simply send the right note codes to
all three channels at the same time, like:

SOUND 14;7,18;7,21;7

Try this out by typing it in,
then pressing RET'N... |

Did you recognise the chord? It was the C~-major chord C-E-G.

There are a couple of different ways that you can use to get
Wizzard to play a complete tune. One way 1is to have all of the
hote codes in DATA instructions, and use a READ instruction to
feed them into a SOUND instruction. This is quite a good way of
doing it if you just want to play a simple melody through one
of Wizzard's sound channels -- with the other two channels
staying silent.

Here's a li+*tle program that shows how 1t's done:

1% REM MYSTERY TUNE

20 DATA 16,1,16,1,18,3
30 DATA 16,3,21,3,20,5
44 DATA 16,1,16,1,18,3
50 DATA 16,3,23,:;3,21,5
6¢g DATA 16,1,16,1,28,3
79 DATA 25,3,21,3,20,3
8¢ DATA 18,3,20,2,20,2
99 DATA 25,5,21,5,23,5
109 DATA 21,7,0,0

2093 READ N,D

2190 IF N=@ THEN END
228 SOUND N;D, 1;D, 1;D
233 GOTO 200

§f Type this in, then LIST it to

check that 1t's right.
If 1t 1s, RUN it to learn the
identity of our mystery tune!

Can you see how this little program works? The program 1itself
is just lines 208 to 23@, after all the DATA lines with the
note codes for the tune. All it does 1s keep reading code
numbers (line 288) and playing them (line 228), loopling around
until it reads -out the §,0 code stored at the end of the tune
(line 148). Line 212 then makes it stop.

58

Notice how we made the READ instruction bring out two numbers
at a time from the DATA lines, calling them N (for note) and D

(for duration)?
second and third channels in line 2249,

We also used D as the note length code for the
so that these channels

stayed silent for the same time as the notes,

This way is fine if you just want to play a simple melody 1in
one channel. But it gets a bit messy if you want to go a bit
further and play music with chords and different note lengths,

To do this,
instruction for each new note. Like this:

10
29
30
49
59
60
70
89
90
100
119
120
130
149
158
160
170
180
190
200
210
220
230
240
250
260
270

Get the i1dea?

it's generally easier to use a new SOUND

REM MYSTERY MUSIC

SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND

SOUND

16;1,1:3,1;3

16;1

18;3,13;6,9;06

16;3

21:3

20:5,16;6,14;6

16;1

16;1
18;3,16;6,14;6

SOUND
SOUND

SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
SOUND
oOUND

SOUND
SOUND
SOUND
SOUND
END

16; 3
23:3

21;5,13;6,9;6

161
16;1

28:3,13;6,9;6

25;: 3
21;:3

200:3,14:5,9:5

18;3

26:2,1:5,1;:5

26 2

25:5,13:7,9;7

21:5

23:5,16;5,14;5
21:;7,13:7,9;7

Why not type this in and RUN
it? You'll be surprised how

much better it sounds than
our last program...

Now you should be able to make your Wizzard play

all sorts of ilmpressive music,

59

There's just one more thing to note, If you give Wizzard notes
of different lengths to play in its three channels, like line
180 in that last program, the next note you give it will go to

the channel which had the shortest note. So the notes in lines
112 and 128 will automatically go to channel 1, because 1t had

the shortest note (length code 3) from line 19#. The other two
channels will still be playing their longer (code 6) notes.

So it's quite easy to have Wizzard playing a melody line with
short notes in channel 1, while channels 2 and 3 play long
chords.

Finally, here's a quick quiz before we go on.

QUICK QUIZ 9

1. How many different notes can Wizzard play? (Pick one)

(a) only one -- but a nice one!
(b) thirty —— from tenor C to F above high C
(c) two —-- sweet and sour

(d) eight, ranging from very short to very long

3. What is a musical rest? (Pick one)
(a) When Wizzard has to stop to catch its breath
(b} A stand that holds up your music book
(c) A pause in the music, for just the right
length of time.

4. What was our mystery tune on page 58?7 (Pick one)
(a) Jingle Bells |
(b) When the Saints Go Marching In
(c) Happy Birthday
(d) Amazing Grace

Music? It's in my blood...

gl u;“ll“"‘"l

60

CHAPTER 14 -- Which colour would you likg?

Until now, Wizzard has been "talking"™ to you through your TV
screen with black letters and numbers, on a green coloured
background, Or if you only have a black and white TV, on a

bluish-white background!

If you do have a colour TV set, it's easy to get Wizzard to
vary this colour scheme. You can change not only the background
colour on the screen, but the colour of the letters and
numbers, and even the little squares of screen around them --

all separately.

And since you can vary these colours from your programs, this
lets you use Wizzard to produce all sorts of colourful screen

patterns and effects!

It's all done with a single new instruction -- the COLOR
instruction (makes sense, doesn't it?), which looks like this:

COLOR N, C, B

N stands for a code number which tells Wizzard whether you want

to change the colour of the whole screen, or of a particular
group of characters (letters, numbers and so on).

C stands for a code number which tells Wizzard which colour you
want for the screen or characters. And B stands for an extra
code number which you use to tell Wizzard the colour you want
for the small square of screen around the characters.,

Sound a bit complicated? 1It's easlier than you think,

Let's say you just want to change the colour of the screen
background, from green to a rich, deep red., All you need to do

this is the instruction:

COLOR 8,7

Here the first number @ is the code number for the screen
background, and 7 is the code number for deep red.

Why not try 1t?

Type this instruction 1in now,

then press RET'N,

Quite a change from the green, 1isn't 1it!

6l

You can change the screen background to a lot of other colours,
just by using the same 1instruction with different numbers 1in

the second position., There are 16 different colours, and here
are thelr code numbers:

- WIZZARD'S COLOUR CODES
1 = Transparent 9 = Medium Red
2 = Black 13 = Light Red
3 = Medium Green 11 = Deep Yellow
4 = Light Green 12 = Light Yellow
5 = Dark Blue 13 = Dark Green
6 = Light Blue 14 = Magenta
7 = Deep Red 15 = Grey
8 = =

Cyan 16 White

The same colour code numbers are used when you tell Wizzard to
change the colour of the characters. But to do this, you also

need to know the code numbers for the various characters.

The characters are divided into 16 groups or sets, each with
eight characters in it. Each set is given a number, and it 1s

these numbers you use in your COLOR instruction.

How do you work out the character set you want? Well, the
characters are grouped into the various sets according to the

code numbers that Wizzard uses to represent them inside 1tself,

These are known as the ASCII codes, and they're listed for you
in Appendix D at the end of this book.

Here are the character set codes for the 16 groups of
characters, showing the ASCII codes 1in each group:

- CHARACTER SET CODES - '

5 = ASCII codes 32-39 13 = ASCII codes 96-103
6 = ASCII codes 40-47 14 = ASCII codes 194-111
7 = ASCII codes 48-55 15 = ASCII codes 112-119
8 = ASCII codes 56-63 16 = ASCII codes 128-127
9 = ASCII codes 64-71 17 = ASCII codes 128-135
13 = ASCII codes 72-79 18 = ASCII codes 136-143
11 = ASCII codes 8@-87 19 = ASCII codes 144-151
= codes = 152-159

ASCII

88—-95

20

ASCII

codes

OK, let's look at an example. Say you want to have the numbers

from @ to 7 printed out on the screen in dark blue, on little
white squares, instead of black on green. To do this, you would

give Wizzard the instruction:

COLOR 7,5,16

62

Here 7 is the character set code, which you find by first
getting the ASCII codes for the characters you want (from the

list in appendix D), and then looking for these codes in the
table we've just given you,

The other two numbers are the codes for the colours you want: 5
for dark blue characters, and 16 for the white squares around
them,

How about trying this yourself?
Type in this instruction, then
press RET'N. Then test that it

works, by typing in the numbers
from @ to 7...

Getting the idea? 1If we wanted to change the letters from P to
W, so they were printed in deep red on little squares of deep
vellow, we would use the instruction:

COLOR 11,7,11

Here's a little program that gets Wizzard itself to show you
the wide variety of colour combinations that are possible:

10 CLS

20 FOR A
30 COLOR

P A
43 FOR B 1 TO 16 ‘———-————-l
50 FOR C = 1 TO 16 e
63 COLOR 9,B,C third gsecond outside
7¢ COLOR 18,B,C loop loop loop

8¢ PRINT "HELLO ";A,B,

98 NEXT C ———————I
100 NEXT B
110 NEXT A we

120 END

1 TO 16

t il =1

What this does 1s use three FOR-NEXT loops, each one inside the
one before it. This 1s called nesting loops.

The outside loop (lines 30 and 11@) uses line 40 to change the
screen background through each of the 16 possible colours. Then
for each of these colours, the second loop (lines 58 and 108)
changes the characters in character sets 9 and 1@ through all
16 colours too. And finally, for each colour of these
characters, the third loop {lines 68 and 90) changes the little
squares around the characters through all 16 colours.

63

So you get virtually all the possible colour combinations, one
after the other. But don't take our word for itl!

Try typing 1t 1n yourself, and |

RUN it to see how 1t works...

You mightn't see much for a while, because the first two screen
background colours are very dark. But things soon brighten up,

as you'll see,

Notice that line 8¢ prints the three loop counter varilables, as

well as the HELLO message. But because we aren't changing the
colour for the number character sets, these stay 1n black. So

vou don't even see them for a while!

By the way, this program makes Wizzard go through 16 times 16
times 16 or 4,096 different loops, 1t takes quite a while to

runlli

As you can see, Wizzard really gives you a lot of flexibility
when it comes to changlng the screen colours. When you add to
this the ability to draw pictures or "graphics", there's almost
nothing you can't make Wizzard put on your TV screen —-— except

perhaps an episode of "Star Trek"!

We're going to look at graphics next, so stay with us...

CHAPTER 15 -~ Drawing on the screen (graphics)

Up until now, the only things we've been able to get Wizzard to

show on your TV screen have been letters and numbers, Wouldn't
it be nice if we could make 1t draw shapes and patterns on the

screen as well?

As it happens, we can. With a little ingenuity, you can get
Wizzard to draw all sorts of interesting "graphics" on the

screen. So let's see how it's done...

When you tell Wizzard to PRINT something on the screen, it
simply puts what you tell it to print on the next available
"line" on the screen. This isn't much good if we want to draw
shapes or patterns, because it won't let us draw things at
particular places -- like the middle of the screen, or the top

right-hand corner.

Here's where another new instruction comes to the rescue, It's
called PLOT, and it lets us tell Wizzard to put a character
anywhere we like on the screen. It looks like this:

PLOT X, ¥, C

Here X stands for a number telling Wizzard which column of the

screen we want it to put the character in. And Y stands for a
number which tells Wizzard which row of that column to put the

character 1in. |

Between them, X and Y give you a lot of possibilities,
Wizzard's screen is divided into 32 vertical columns, and 24
horizontal rows: |

. COLUMNS
2 4 6 3 1@ 12 14 16 18 20 22 24 26 28 3@ 3z
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3l

16

18

65

So there are 32 times 24, or 768 different positions on the
screen that you can put a character. The only slight

complication is that with some TV sets, you may not be able to
see all of the positions in the columns at the far left and far
right (columns 1, 2, 31 and 32).

This means that depending upon your TV set, you may only be
able to use 28 of the columns -~ from column 3 to column 34.

But this will still give you 672 different positions!

The third letter after the PLOT instruction, C, stands for the
ASCII code number of the character you want. So to plot a

letter or number you would find its ASCII code number from the
table at the back of the book in Appendix D, and use that.

Let's look at an example. Say you want to getIWizzard to put an
asterisk or star (*) character at the centre of the TV screen.

First of all, you work out from the chart on page 64 the column
and row numbers for the centre of the screen. These would be 16
(half of 32) and 12 (half of 24). So these would be the numbers

for X and Y. Then you would look up the ASCII code number for
the asterisk character, f£rom Appendix D. This turns out to be

42. So the instruction to do this would be:

PLOT 16,12,42

Try this out for yourseltf, Type

-~ 1t 1n, then press RET'N...

Get the idea? The PLOT instruction lets you put any character
you like, anywhere on the TV screen. |

But that's not all Wizzard can do in the graphics department.,
You aren't just limited to the normal letters, numbers and

punctuation marks, because Wizzard also lets you teach it your
own speclal characters!

You do this using another new instruction, the CHAR
instruction, which looks like this:

CHAR N, XXXXXXXXXXXXXXXX

Here N stands for the code number you want Wizzard to give your
new character., Thls number can be anything between ¢ and 255,
and 1t becomes the number you use as C in the PLOT instruction,

to get Wizzard to put your new character on the screen,

60

The 16 X's after the comma 1n the CHAR 1nstruction stand for
string of 16 code number digits or letters which you use to
give Wizzard the pattern of your new character,

This part is easier than 1t sounds. If you look carefully at
the TV screen, you'll see that all of the characters that
Wizzard displays on the screen are made up of little dots.
They're just different patterns of dots, in the same
8-dots-wide by 8-dots-high square:

Wizzard thinks of these 64
little dots as being 1in 16
groups or segments, each of
4 dots. The left half of

the top row, then the right
half, then the left half of

the second row, and so on.

The 16 code number digits

or letters in the CHAR
instruction are just to tell

Wizzard what you want the
dot pattern to be 1n each
of these 4-dot segments.

How do you work out the code number or letter for each of the
16 segments of your new character? Easy! From this table:

PATTERN CODE PATTERN CODE

g 8
1 9
2 A
3 B
4 C
5 D
6 E
7 F

So to teach Wizzard a new character, you first draw up a grid
of 64 little squares. Next you work out the pattern you want
for your new character, by filling In as many squares as you
need, Then you find the code number or letter for each of the

16 segments, from the table above. Finally you decide on the
code number that you want Wizzard to give the new character,

and type it all in as a CHAR instruction.

67

Getting a little confused? Don't worry. Let's look at an
example, and it should all become clear.

Say we want to teach Wizzard a new character which 1s a little
face., The first thing to do is draw up our grid of 64 little
squares, and fill them 1in to show the dots that we want to make
up the new character:

Right! Now we look up the table on page 67, and work out the
code number or letter for each of the 16 segments of 4 dots,

These turn out to be 3, C, 4, 2, 8, 1, 8, 1, 8, 1, 8, 1, 4, 2,
3 and C,

Don't just take our word for this,
Work them out for yourself, to
make sure you understand them.,..

All we need to do now is decide what code number we want to
give this little face character -- say code 5. Then it's just a
matter of putting all of this into a CHAR instruction:

CHAR 5, 3C4281818181423C

Try typing this in, and then pressing
RET'N. Then get Wizzard to show you

what it looks like, by typing in
PLOT 16,12,5 and then RET'N agailn.

Get the idea now? Using the CHAR instruction you can teach
Wizzard how to draw all sorts of new characters —-- anything

that can be made up from 8 rows of 8 dots.

68

You can teach it up to 255 of these new characters, if vyou
like., There's only one small complication. If you give a new
character the same code as one of the normal letters and
numbers (as shown in Appendix D), you'll find that Wizzard will
replace the normal character with your new character.

This isn't permanent -- the normal character won't go forever,
It will come back again if you turn Wizzard off, and then back
on agatiln.,

All we're really saying is that Wizzard can only remember 225
different character codes at the one time., So 1f you want all
of these for special characters, it has to temporarily "forget"
the normal letters and numbers.

Why would you need so many special characters? Well, you might
need them if you want to get Wizzard to draw bilig and
complicated things on the screen. To do this, you'd need to
teach it lots of "building block"™ characters, each one making
up a part of your biligger pattern.

For example if you wanted to get Wizzard to draw a large face,
vou'd need to teach it perhaps 4 or 6 characters, which go
together to form an eye. Then perhaps another 6 or 8 characters
which go together to form a nose, and another 6 or 8 which
would form an ear, and So onh...

Using the PLOT and CHAR instructions, you can get Wizzard to
draw all sorts of things on its screen. Here's a very simple

little example you might like to try:

19 CLS

29 CHAR ¢, 1818FF3C7EFF24660
3 FOR A = 10 TO 14

49 FOR B = 13 TO 24

5 PLOT B, A, 0

6@ NEXT B

70 NEXT A

8@ END

Try typing this in. Then type 1in
RUN, and see what the program

puts on the screen...

Now you know how it's done, you should be able to wrilte
programs of your own, to draw all sorts of things on the

screen,

69

CHAPTER 16 -— A b1t more about wlzzard S maths

This chapter is really only for the person who wants to write
programs so they can get Wizzard to work out the answers to

miaths problems. If you're not ready for this yet, don't worry
about it -- just use what we've shown you so far to have fun!

Decimgls

Wizzard can work with numbers up to 7 figures in length and 1t
lets you put in a decimal point as well,

If you don't put in a decimal point Wizzard will assume you
don't want one -- but you can use them.

NOTE
¥ Write decimals the usual way

and Wizzard can read them up
to 7 figures 1n a number.

Wizzard will also give you
decimals when you get it to

PRINT the answer to a sum.

Relational operators

Earlier in this book, we mentioned > (greater than) and < (less
than). These are called relational operators because they are
used to describe the RELATIONSHIP between two variables or

numbers.

A>B, for example, says that A is greater than B. In other
words, it says that in relation to B, A 1is blgger.

There are other relational operators besides > and <, and
Wizzard can use them all.

What if you just want to say in an instruction line that A 1is
not the same as B? You can use <>.

NOTE
means that wvariable A

NOT equal variable B.

If you want to describe a number that 1s elther the same as
another number or less than it, you can use <= . And 1f you
want to say that a number is the same or bigger than another
one you can use >=,

70

NOTE
means that A 1s less

OR equal to B.

means A 1s greater
OR egqual to B.

Squares, cubes etc

Let's say we have a line in a program where we want to square a
variable A. We could just write A*A, so that Wizzard multiplies
A by itself. And if we want to cube A, we could write A*A*A,

That's all very well for a short things like squares and cubes,
but what if we want to get A to the power of 6 (or A X A X A X
A XA X A)? It would probably be too long to put in a single
instruction line to begin with!

Luckily there is a simpler way, using the double asterisk (*¥*).

» NOTE
Wizzard uses ** to mean
"raise to the power of".
So A**3 means A cubed,
A**5 means A to the 5th
power, and A**2_.76 means

A to the 2.76th power.

And you can find square roots of numbers using SQR.

NOTE
SOR(A) will get Wizzard

to find you the square
root of A.

If you want cube roots or more, you can get Wizzard to use
logarithms to get them for you.

ngarithms

If you have learnt about logs and anti logs at school, you will
already know why you can use them in the way we describe. If
you haven't —-- this book isn't long enough to explain them, so
we will just tell you how to use them.,

Wizzard will do natural logs (or logs to the base e) for you
using LOG, and antilogs (turning logs back into ordinary

numbers) using EXP.

71

To get the log of A, use
LOG(A). To get the anti-
log of B, use EXP(B).

NOW - to get the cube root of a number, you normally gét its
log, divide that log by 3 and then get the antilog of the

result., If you wanted the fifth root you would divide the log
by 5 and get the antilog of the result.

So to get the cube root, of, say, 17, use these commands (using
line numbers to fit in with your program of course):

10 A=LOG(17)
20 A=A/3
3¢ PRINT EXP(A)

Sine, cos and tan

e s e e e

Wizzard will work out sine cos and tan for you, but it measures
angles in RADIANS instead of degrees. To get the right answer
you have to divide your angles in degrees by 57.2958. This is
not as hard as it sounds -~- after all, you have a computer to
do the work for you!

_ T U —
To get the sine of A, use
SIN(A/57.2958).

To get the cosine of A,
use COS(A/57.2958).
To get the tangent of A,
use TAN(A/57.2958).

For example, you can easlly make a little program so that
Wizzard can save you from looking up your sine tables:

5 REM WORKS OUT SINES

18 CLS
20 PRINT"WHAT IS ANGLE";

30 INPUT A

49 A=A/57.2958

5@ PRINT"SINE IS";SIN(A)
60 GOTO 20

You could have very similar little programs to save you looking
up cosine and tangent tables. If you wanted to be really smart,

you could write a program to find all three -—~ or any of them,
whichever you ask for!

712

INT, ABS and SGN

If you have a number with a decimal point in 1it, you can use
INT to give you just the whole integer part of the number (it

chops off anything after the point).

If you want the ABSOLUTE value of a number (without + or -
signs) -— use ABG.

If you don't need to know how big a number is, but just whether

it is positive or negative (+ or -) -- use S5SGN.
NOTE
SGN(B) gives you the sign
of B.

ABS(B) gives you the size,
or absolute value of B.

INT(B) gives the integer,
or whole number part of B.

Using these maths functions, you can get Wizzard to work out
the answers to all sorts of things.

73

CHAPTER 17 —-- Some final comments

We're now at the end of our first-time journey into the
fascinating world of computers and programming. If you're still
with us, and we certainly hope you are, you've hopefully learnt
quite a bit while working your way through the last 780-odd
pages. We hope you've had some fun, too!

One of the things we'd like to say Jjust before we do end up 1is
that although we've shown you quite a bit about programming
your Wizzard, it's only been possible to cover the very basic
ideas. There's still a good many things that Wizzard can do,
that we just haven't had room to explain here,

Things like advanced string handling, data arrays, and PEEK and
POKE. Wizzard can do all these things, as you'll see from the

summary of its BASIC instructions and commands.

But for explanations of these more complicated aspects of
Wizzard's operation, you'll have to read one of the many

excellent textbooks around on BASIC programming. Our alm in
this book has been to help you get started, and give you a good

grounding.

If we've done our job properly, you should now be able to read
the more advanced books, and understand them.

But don't be in too much of a hurry. The tricks we've shown you
here are much more powerful than you might think. Even 1f you
don't read a more advanced book for a while, they'll let you
write programs to get Wizzard to do all sorts of useful and

educational things.

So go ahead and experiment. If you make a mistake, all that can
happen 1s that Wizzard will give you an ERROR message -—-
telling you that it just doesn't understand.

And don't forget to have FUN!

74

APPENDIX A —- WHAT THE UNFAMILIAR WORDS MEAN

ASCII A code used by computers like Wizzard. Numbers between
g and 127 are used to stand for each of the letters of
the alphabet, number digits and punctuation signs. The
letters ASCII stand for "American Standard Code for
Information Interchange". Pronounced “ass-key".

BASIC The computer programming language used by Wizzard and
most other small computers, BASIC is short for .
"Beginners All-purpose Symbolic Instruction Code®.

CHARACTER A letter, number digit, punctuation sign or other
symbol used to communicate information.

CONSTANT Something that stays the same in value. In computers
there are generally two types of contants: numeric
constants like 2 or 528.57, and string constants like
"FRED" or "HELLO".

COUNTER A numeric variable whose value is used to count the
number of times something happens -- like the number
of times the computer loops around in a program.,

DATA Another word for information. Anything which tells
either you or the computer the size of something (like
a numeric constant or variable), or a message about
something (like a string constant or varilable).

DECISION A situation where either you, or the computer, must
look at some data, and decide what to do or which way
to go in the program.

DIRECT COMMAND An instruction to the computer to do something
straight away, in contrast with a program instruction
which it does not execute until told to RUN.

EXECUTION What the computer does when it carries out your
instructions, whether they are direct commands or
statements 1n a program,

FLOWCHART A diagram used to show the path(s) that the computer
will follow in working through the various steps in
your program,

GRAPHICS Drawings and diagrams, in contrast with text etc,

KEYBOARD The set of keys that you use to feed information into
the computer.

75

INSTRUCTION A message given to the computer to get 1t to do
something.,

LOOP A part of your program where the computer is forced to
keep jumping back to follow some of the instructions

over and over again,

MEMORY The part of the computer which stores both program
instructions and any data they need.

PROCESSOR The part of the computer which actually carries out
your instructions, and eXecutes your program.

PROGRAM A series of instructions which are written by you, or
somebody else, to get the computer to do a useful job.

RELATIONAL OPERATOR A mathematical or logical sign used to
show the relationship between two pieces of data.

Examples are equals (=) and greater-than (>).

REMARK A message in a computer program which 1is purely to
explain what is going on, for the benefit of humans.

REMarks are ignored by the computer itself.

STATEMENT Another name for INSTRUCTION.

STRING A piece of data which consists of one or more letters
or other characters, and which the computer treats

purely as a group of characters.

SUBROUTINE A part of a computer program which is separate from
the rest, and arranged so that the computer "Jumps" to
it and carries out its instructions from various

points in the main program,

VARIABLE Simply, the name of a location in memory where the
computer stores either a number (numeric variable) or
a string (string variable). Wizzard gives numeric
variables single-letter names like A and F, and string
variables similar names ending in a dollar sign --

VIDEO SCREEN The screen which the computer uses to show you
things. With Wizzard, it is the screen of your TV set.

76

APPENDIX B -~ A SUMMARY OF WIZZARD'S BASIC

1. DIRECT MODE COMMANDS:

CLOAD loads a program that has been saved on cassette, back
into the computer's memory.

CON tells the computer to continue running the program 1in
its memory, from the point that 1t was told to STOP.

CSAVE saves a program that is in the computer's memory, by
recording 1t on a cassette tape.

LIST prints out on the video screen a listing of the program
lines in the computer's memory, in line number order.

LLIST very similar to LIST, except that 1t prints out the
program listing on paper, using your printer -- 1f you
have one. (If you don't have one, LLIST will cause the
computer to go into a "dead loop". The only way out of
a dead loop is to turn the power off, and then back
on again -- losing your program.)

NEW tells the computer to "forget" the program in 1its
memory, and get ready to store another one.

RUN tells the computer to start executing the program in
its memory, starting at the line with the lowest number.

(CNT'L) + C tells the computer to STOP executing the program
in its memory, and wait for a further command.

2. MAIN PROGRAM STATEMENTS

DATA tells the computer that the numbers followlng it on the
instruction line are data, to be used by a READ line

later in the program.

DIM X(n) tells the computer to keep a part of 1ts memory to
store n numbers in an array or matrix called X.

END tells the computer that it has come to the end of your
program.

FOR variable = m TO n STEP p
tells the computer to execute the following instruction

lines (down to the line which says NEXT and the same
variable name) a certain number of times. The first time

77

it should give "variable" the value m, then (m + p), then
(m + 2p) and so on, until its value is greater than n.

If "STEP" and "p" are not given, the computer assumes you
want a step size of 1.

GOSUB n tells the computer to go to the subroutine starting
at line number n., Also tells it to "remember" where
the GOSUB is, so that it can come back to the
following line when 1t RETURNSs.

GOTO n tells the computer to go to line n, instead of going
on normally to the line following the GOTO.

IF expression THEN statement
tells the computer to work out "expression", then

1f the answer is "true" or "1", to execute
"statement", If the answer to "expression" 1is
"false" or "@", the computer ignores the rest of
the line and just goes on to the next line.

INPUT n tells the computer to print a question mark "?" on
the screen, then wait for a number variable n to
be typed in from the keyboard. If n 1s replaced
with a string variable symbol like S$A, INPUT can
be used to bring in a string variable.

LET variable = expression
tells the computer to give "variable" the same value

as "expression". If it doesn't already have a number
variable with the name "“variable", it will create
one. The word "LET" is optional, so you can leave it
out if you wish. (I.e., "A=5", or "M=N+2")

LPRINT variable(s) or string(s)
tells the computer to print out on the printer the
variable(s) or string(s) you specify. (NOTE: if you
don't have a printer connected, LPRINT will cause
the computer to go into a "dead loop" —-- from
which the only escape 1s to turn off the power and
turn it back on again. This loses your program!)

NEXT variable
tells the computer that this point 1in your program

marks the end of the lines which it should loop

around in followling the "FOR" statement, on an
earlier line, which uses the same wvarlable name,

PRINT variable(s) or string(s)

tells the computer to print out on the video screen
the variable(s) or string(s) you specify.

78

PRINT TAB(n) works like the normal PRINT instruction, except

READ a

REM

RESTORE

RETURN

STOP

that it starts printing n spaces in from the left.

tells the computer to fetch the next data number it
can find in a DATA line earlier in the program, and
call the number a.

tells the computer that 1t should 1gnore the rest
of this line, as it is only a "remark" to explain
things to anyone who looks at your program.

tells the computer that the next time it executes
a READ instruction, it should go back to the first
number in the first DATA line of the program,

tells the computer that it has reached the end of

a subroutine, and should go back to the next line 1in
the main program after the GOSUB that sent 1t there,

tells the computer to stop running the program,
and return to direct command mode. Simllar to
END, but STOP allows the computer to CONT1lnue,

3. GRAPHICS AND SOUND

CLS

tells the computer to %"clear" the video screen,
leaving 1t blank,

CHAR N, XXXXXXXXXXXXXXXX

COLOR n,c,b

PLOT X,v¥Y,C

SOUND a;Xx,

gets the computer to create a new graphics character

and give it the code n. The 16 code characters after
the comma are used to define the dot pattern of the

new character.

Changes the colour the computer uses to display.
on the TV screen the set of characters with
character set code n. ¢ is the code number for the
new character colour, and b is the code number for
their background squares.

tells the computer to place a character on the
video screen, in column x and row y. Cc 1S the code
number for the character.

b;Y, C;2

tells the computer to play musical notes in 1its
three music channels. a, b and ¢ are the code
numbers for the notes wanted, while x, y and z are
code numbers for the length of the notes,

79

4. FUNCTIONS

ABS (X) tells the computer to find the absolute value of x.

COS (x) tells the computer to find the trig. cosine of x.
(x must be in radians)

EXP (x) tells the computer to find e (=2.71828) raised to
the power of x. Equivalent to the natural anti-
logarithm of x.

INT (x) tells the computer to find the integer or "whole
number" part of Xx.

LOG (x) tells the computer to find the natural logarithm
of x, using the base e (=2.71828).

RND (n) tells the computer to find a random number between
1l and n,.

SGN (X) tells the computer to find the sign of variable x.
If x is positive, the answer will be 1; if x 1is
negative, the answer will be -1,

SIN (x) tells the computer to find the trig. sine of Xx.
(x must be in radians)

SOR ({x) tells the computer to find the square root of X.

TAN (X) tells the computer to find the trig. tangent of X,

5. STRING FUNCTIONS

ASC {(string) tells the computer to find the ASCII code number,
in decimal, for the first character in "string".
"string" 1s a string variable,

CHRS (expression) tells the computer to work out "expression®,
then find the character (number or letter)
whose ASCII code corresponds to this number.

LEPTS (string, n)
tells the computer to form a new character string,
made up from the same characters as the first n
characters of the string "string".

LEN (string)
tells the computer to find the number of characters

in "string".

80

MIDS$ (string, p, n)

tells the computer to form a new string of n
characters, by copying n characters of "string",
starting with the one p characters from the start.

RIGHTS (string,n)

tells the computer to form a new string of n
characters, by copying the last n characters of
"string".

STRS (expression)

tells the computer to work out the value of

"expression", then form a string of digits which
when printed out, show this value as a number.

VAL (string)

PEEK (a)

POKE a,b

tells the computer that "string" 1s a set of
digits which represent a number, and that it
should work out that number.

6. SPECIAL FUNCTIONS

tells the computer to find the number stored 1in the
memory location with address a. a must be between

and 655360.

tells the computer store the number b directly in
its memory location with address a. b must be

between @ and 25% and a must be between @#-65536.

81

APPENDIX C —-- WIZZARD'S ERROR MESSAGES

If Wizzard comes across an error 1ln your program while it is
runhing, it will stop and give you an error message. This will
be a number code, for the type of error, together with the
program line which has the error. Here are the meanings of the
various error codes:

B1l:

B3

24

A5

Ao

37 :

38

B39

19 :

11

NEXT WITHOUT FOR -— You have put a NEXT in your program
without a matching FOR somewhere ahead of it. Either get
rid of the NEXT, or put in the missing FOR!

RETURN WITHOUT GOSUB -- You have put a RETURN 1in your

program at a place where there hasn't been a GOSUB. So
either get rid of the RETURN, or add the missing GOSUB!

MISSING LINE NUMBER -- You have left a line number out of
an instruction, or referred to a line number that doesn't
exist —- like GOTO 1508, when there isn't a line 156!

MISSING OPERAND -~ You have used a function that needs an

operand (the variable the function acts on), but you have
left out the operand. Put 1t in, and try again.

SYNTAX ERROR —-- You've made some sort of typing error,
like spelling a word wrongly, or using wrong punctuation.

OVERFLOW ERROR ~— Either you've typed in a number or a
string that's too big for Wizzard to handle, or your
program is too big to fit 1n 1ts memory.

ILLEGAL NESTED FOR —-- You have wrongly "nested" two FOR ...
NEXT loops. Both the FOR and NEXT lines of the inner loop

must be inside the outer loop, not just one of themn,

ILLEGAL NESTED GOSUB --— Yﬁu've probably got two subroutines
which call each other, which would send Wizzard chasing 1ts

tail forever! Or you've forgotten a RETURN.

SYSTEM ERROR -- Either you've made an error Wizzard can't
identify, or it has made a mistake itself (not likely!).
Try turning it off and starting all over again.,

STACK OVERFLOW —-- Usually this means that you have tried to

"nest" too many FOR..NEXT loops or subroutines. Wilzzard
just can't keep track of them all!

ILLEGAL OPERAND -- You'wve probably got a number variable as
the operand of a string function, or vice-versa.

82

12

13:

14:

15

16

17

18

19

20 :

21:

Graphics? of course Wizzard
can do graphics...

ILLEGAL IF ERROR —- You've made a mistake in the expression
that Wizzard has to work out in an IF...THEN. It may not
give an answer of "true" (1) or "false" (80).

PARENTHESIS ERROR —-- You've made a mistake with your paren-
thesis brackets. Perhaps you haven't matched all the
opening brackets with closing brackets,

PARENTHESIS LEVEL ERROR —-- You have too many levels of par-
enthesis (brackets inside brackets inside...). Split the

expression into two parts, in separate lines,

STRING NOT FOUND -- Your line specifies a string variable
that Wizzard can't find. Probably a typing error,

STRING EVALUATION ERROR —- Wizzard has struck trouble iIn
trying to find the VAL of a string. Probably you've told it
to find the VAL of a string that isn't just number digits.

DIVIDE BY ZERO —- Your line has a expression that 1is
asking Wizzard to divide a number by zero. It can't!

OUT OF DATA -- You have a READ line that has told Wizzard
to fetch more data items than you have in DATA lines.

DATA AREA OVERFLOW —— Your program is trying to store too
many DATA items. Wizzard has run out of storage spacel

DIM ERROR —— Your line tells Wizzard to fetch an array
element that wasn't defined in a DIM statement,

STRING LENGTH ERROR -~ You have a string variable that is
too long, or have made a mistake in a string function -—-
like telling Wizzard to find the 1pth character in a string

only 6 characters long.

83

APPENDIX D —-- WIZZARD'S ASCII CHARACTER CODES

il

ASCII ASCII

CODE CHARACTER CODE CHARACTER
32 (space) 64 @ (at sign)
33 ! (exclamation mark) 65 A

34 " (quotation marks) 66 B

35 # (hash or no. sign) 67 C

36 S (dollar sign) 68 D

37 $ (percent sign) 69 E

38 & (ampersand) 70 F

39 ' (apostrophe) 71 G

44 ({(opening bracket) 12 H

41 } {closing bracket) 73 I

42 * (asterisk) 74 J

43 + (plus sign) 75 K

44 , {comma) 76 L

45 - {minus sign) 77 M

46 . (full stop or point) 78 N

47 / (slash) 79 0

48 B (zero) 80 P

49 1 81 Q

50 2 82 R

51 3 83 S

52 4 84 T

53 5 85 U

54 6 86 \'i

55 7 87 W

56 8 88 X

57 9 89 Y

58 : (colon) 90 Z

59 : (semicolon) 91 ! (open sqr bracket)
o0 < {less than) 92 (backslash)
61 = (equals sign) 03 ! (closing sqr brkt)
62 > (greater than) 94 (up arrow)
63 ? (guestion mark) 95 (line)

84

APPENDIX E —— ANSWERS TO QUICK QUIZ QUESTIONS

Quiz 1

1: Nothing -~ a computer has to be told what to do because it
can't even think for itself,

2: (c) A computer is like a slave -- it follows our

instructions but it does what we tell it to do very fast.

3: The set of instructions given to a computer 1s called a
PROGRAM. '

4: Because it was programmed by a chicken (this is not a
serious part of the quiz -- we just thought you might like it).
5: (b) AND (d). When telling a computer what to do or
PROGRAMMING it, you must tell it in detall AND in the right
order everything you want 1t to do,

Qulz 2

1: (d). Baluns (pronounced like "balance") are used to connect
Wizzard to your TV if you have the wrong sort of aerial socket.
2: (b). You must turn Wizzard off before plugging in your BASIC
cartridge,

3: Your TV should be on VHF channel 1.

4: Because he was out of baluns (balance —-- get 1it?)

Quiz 3

1: (a). A processor or CPU follows the orders in the program
vou have given 1it. |

2: (c¢). Executing an instruction 1s the same as obeying it.

3: BASIC is a simple language, very like English, that Wizzard
can understand.,

4: (b). LOADING a program means putting it into the computer's
memory.

5: (¢c). When a computer RUNS a program it executes the
instructions in the program.

6: (c¢). Wizzard lists the program in its memory by showling it
to you.

7: Because it got loaded and had to run,

Quiz 4

1: (d). Wizzard needs line numbers to know the right order for
following your instructions.

2: (b) AND (d). A command, like RUN and LIST doesn't have a
line number. This is because it is not part of the program, it
simply tells Wizzard what to do with the program.

3: 16, 208, 30 etc.

4: Lines are given numbers with gaps between them so that you
can add extra lines later if you forget anything.,

5: (¢c). A programming loop is what happens when Wizzard goes
back to an earlier line. One way of getting Wizzard to loop
round is to put a GOTO instructlion in your program,

85

Quiz 5
l: Change lines 5 and 18 to the following:
5 PRINT "5 + 3 =",
13 PRINT 5+3
(Now make the changes and run the program)
2. Change lines 5 and 10 again to this:
5 PRINT "7 - ="
10 PRINT 7-4
(Make these changes and run 1t again)
3: (c¢). END tells Wizzard that your program has ended,
4: (b). A semicolon at the end of a print line tells Wizzard
that it should not shift down to the next printing line on the
screen, after printing.

Quiz 6

l: (¢). A = A+l tells Wizzard to take the number in A, make it
one bigger, then put it back in A.
2: Your program should look like this:

130 A=1 |

20 PRINT A;" X 13 =";

30 PRINT A*13

49 A=A+1

50 1I¥ A=16 THEN END

6 GOTO 20
3: An IF...THEN instruction tells Wizzard to look at something,
and 1f 1t has reached a certain size then follow the
instruction on the second part of the line. Otherwise it
ignores the rest of the line and goes to the next line.

QuUIz 7
l: (b). CLS tells Wizzard to clear the TV screen.

2: B>A means B is greater than A.
3: B<A means B 1s less than A.
4: A decision diamond.

mber of times, by "calling" it from the malin program.,
(c). It's a good 1dea to use a subroutine when you find the
same instructions at different places in your program,
3: Because Wizzard wouldn't know where to go back to 1n the
main program, when 1t came to the RETURN instruction,
- 4: As many times as you need to -- there's no limit!
5: (c¢). A subroutine must end with the RETURN instruction.

QU

l: (b). A subroutine is a part of your program that is used a
nu

2

QUIZ 9

1: (b). Wizzard can play 3¢ different notes, from tenor C (an
octave below middle C) to the ¥ above high C.

2: (c}y. A rest is a musical pause.

3: {(¢). The tune is Happy Birthday, of course.

86

DICK SMITH

Electronic

L&)

SHOPS OPEN 9%AM to 5.30PM
Saturday: 9am till 12 noon)
RISBANE: Half hour esarlier.
ANY TERMS OFFERED ARE TO

APPROVED APPLICANTS ONLY ®

Incorporated in NSW

NSW 145 Parramatia Rd

T55 Terrace Leval
613 Princas Hwy
552 Oxford St
B18 George 51
531 Pittwater Rd
147 Huma Hwy
162 Pacific Nwy
396 Lane Cove Rd
30 Grose St

6 Bridge 5t

125 York St

173 Maitland Rd
263 Koira 5t

Tamwarth Acda & Kahls Ava.
ACT 96 Gladstona St

AUBURN

BANKSTOWN 50.

BLAKEHURST
BONBI JUNC.
BROADWAY
8ROOKVALE
CHULLDRA
GORE HILL
RORTH AYDE
PARRAMATTA
SYDNEY
SYDNEY
TIGHES HILL
WOLLONGONG
TAMWORTH
FYSHWICK

§48 0558
107 4888
h4b 71744
387 1444
211 3111
93 0441
642 8922
439 5311
888 3200
683 1133
27 50561
290 33717
61 1896
28 3800
66 1961
80 4944

Vit

Gig

SA

WA

TAS

399 Lonsdaie St

260 Sydney Rd

555 Bridge Rd

Springvale & Dandenong Rds
205 Melbourne Rd

Raosx Smith Ave & Mepean Hwy

293 Adelaide St

1656 Logan Rd

842 Gympie Rd

B0 Wright St

435 Main North Rd

Main South & Flagstaff Rds
414 William St

Wharf 51 & Albany Hwy

25 Barrack St

MELBOURNE
COBURG
RICHMOND
SPRINGVALE
GEELONG
FRANKSTON
BRISBANE
BURANDA
CHERMSIDE
ADELAIDE
ENFIELD
DARLINGTON
PERTH
CANNINGTON
HOBART

67 9644
383 4445
428 1614
547 0522

18 G166
183 9144
229 9377
391 5233

59 6255
212 1862
260 B088
2498 8877
J28 6944
451 BE6E

31 0800

Mail Order Ceatre: PO Box 321, North Ryda 2113, Ph: {02) 288 3200

PA365

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96

